Abstract
We used in vitro selection (SELEX) to isolate RNA 'aptamers' to S-adenosyl methionine (SAM). Individual aptamer sequences conform to the structural element noted previously for adenosine binding in selections for aptamers to ATP and NAD+. When we compare the patterns of sequence conservation among 65 adenosine-binding sequences to the published structure of the adenosine aptamer, we find that the most highly conserved nucleotides contact the bound adenosine directly, and that one conserved nucleotide outside the binding pocket is in position to stabilize nucleotides within the binding pocket. The aptamer's ability to bind diverse adenosine-containing cofactors is easily understood in terms of its mode of binding, which leaves the 5'position exposed to solvent. We propose that aptamers that bind their targets away from the reactive moiety may be particularly well suited for catalysis. Finally, we estimate that one sequence in 10(11) may be able to form this structural motif, and that there may be many other adenosine-binding motifs that have escaped detection because of their lower representation in the starting random pools.
Full Text
The Full Text of this article is available as a PDF (203.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benner S. A., Ellington A. D., Tauer A. Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7054–7058. doi: 10.1073/pnas.86.18.7054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke D. H., Scates L., Andrews K., Gold L. Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J Mol Biol. 1996 Dec 13;264(4):650–666. doi: 10.1006/jmbi.1996.0667. [DOI] [PubMed] [Google Scholar]
- Chapman K. B., Szostak J. W. In vitro selection of catalytic RNAs. Curr Opin Struct Biol. 1994;4:618–622. doi: 10.1016/s0959-440x(94)90227-5. [DOI] [PubMed] [Google Scholar]
- Dieckmann T., Suzuki E., Nakamura G. K., Feigon J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996 Jul;2(7):628–640. [PMC free article] [PubMed] [Google Scholar]
- Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
- Jiang F., Fiala R., Live D., Kumar R. A., Patel D. J. RNA folding topology and intermolecular contacts in the AMP-RNA aptamer complex. Biochemistry. 1996 Oct 8;35(40):13250–13266. doi: 10.1021/bi961345q. [DOI] [PubMed] [Google Scholar]
- Jiang F., Kumar R. A., Jones R. A., Patel D. J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996 Jul 11;382(6587):183–186. doi: 10.1038/382183a0. [DOI] [PubMed] [Google Scholar]
- Lorsch J. R., Szostak J. W. In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature. 1994 Sep 1;371(6492):31–36. doi: 10.1038/371031a0. [DOI] [PubMed] [Google Scholar]
- Lorsch J. R., Szostak J. W. In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry. 1994 Feb 1;33(4):973–982. doi: 10.1021/bi00170a016. [DOI] [PubMed] [Google Scholar]
- Reichard P. From RNA to DNA, why so many ribonucleotide reductases? Science. 1993 Jun 18;260(5115):1773–1777. doi: 10.1126/science.8511586. [DOI] [PubMed] [Google Scholar]
- Sassanfar M., Szostak J. W. An RNA motif that binds ATP. Nature. 1993 Aug 5;364(6437):550–553. doi: 10.1038/364550a0. [DOI] [PubMed] [Google Scholar]