Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 15;25(10):1903–1912. doi: 10.1093/nar/25.10.1903

Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

C M Klinge 1, D L Bodenner 1, D Desai 1, R M Niles 1, A M Traish 1
PMCID: PMC146682  PMID: 9115356

Abstract

The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo .

Full Text

The Full Text of this article is available as a PDF (306.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbondanza C., de Falco A., Nigro V., Medici N., Armetta I., Molinari A. M., Moncharmont B., Puca G. A. Characterization and epitope mapping of a new panel of monoclonal antibodies to estradiol receptor. Steroids. 1993 Jan;58(1):4–12. doi: 10.1016/0039-128x(93)90011-b. [DOI] [PubMed] [Google Scholar]
  2. Anolik J. H., Klinge C. M., Bambara R. A., Hilf R. Differential impact of flanking sequences on estradiol- vs 4-hydroxytamoxifen-liganded estrogen receptor binding to estrogen responsive element DNA. J Steroid Biochem Mol Biol. 1993 Dec;46(6):713–730. doi: 10.1016/0960-0760(93)90312-k. [DOI] [PubMed] [Google Scholar]
  3. Anolik J. H., Klinge C. M., Brolly C. L., Bambara R. A., Hilf R. Stability of the ligand-estrogen receptor interaction depends on estrogen response element flanking sequences and cellular factors. J Steroid Biochem Mol Biol. 1996 Dec;59(5-6):413–429. doi: 10.1016/s0960-0760(96)00129-x. [DOI] [PubMed] [Google Scholar]
  4. Anolik J. H., Klinge C. M., Hilf R., Bambara R. A. Cooperative binding of estrogen receptor to DNA depends on spacing of binding sites, flanking sequence, and ligand. Biochemistry. 1995 Feb 28;34(8):2511–2520. doi: 10.1021/bi00008a015. [DOI] [PubMed] [Google Scholar]
  5. Aumais J. P., Lee H. S., DeGannes C., Horsford J., White J. H. Function of directly repeated half-sites as response elements for steroid hormone receptors. J Biol Chem. 1996 May 24;271(21):12568–12577. doi: 10.1074/jbc.271.21.12568. [DOI] [PubMed] [Google Scholar]
  6. Berry M., Nunez A. M., Chambon P. Estrogen-responsive element of the human pS2 gene is an imperfectly palindromic sequence. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1218–1222. doi: 10.1073/pnas.86.4.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Claret F. X., Antakly T., Karin M., Saatcioglu F. A shift in the ligand responsiveness of thyroid hormone receptor alpha induced by heterodimerization with retinoid X receptor alpha. Mol Cell Biol. 1996 Jan;16(1):219–227. doi: 10.1128/mcb.16.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dawson M. I., Chao W. R., Pine P., Jong L., Hobbs P. D., Rudd C. K., Quick T. C., Niles R. M., Zhang X. K., Lombardo A. Correlation of retinoid binding affinity to retinoic acid receptor alpha with retinoid inhibition of growth of estrogen receptor-positive MCF-7 mammary carcinoma cells. Cancer Res. 1995 Oct 1;55(19):4446–4451. [PubMed] [Google Scholar]
  9. Demirpence E., Balaguer P., Trousse F., Nicolas J. C., Pons M., Gagne D. Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res. 1994 Mar 15;54(6):1458–1464. [PubMed] [Google Scholar]
  10. Demirpence E., Balaguer P., Trousse F., Nicolas J. C., Pons M., Gagne D. Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res. 1994 Mar 15;54(6):1458–1464. [PubMed] [Google Scholar]
  11. Driscoll M. D., Klinge C. M., Hilf R., Bambara R. A. Footprint analysis of estrogen receptor binding to adjacent estrogen response elements. J Steroid Biochem Mol Biol. 1996 Apr;58(1):45–61. doi: 10.1016/0960-0760(96)00015-5. [DOI] [PubMed] [Google Scholar]
  12. Forman B. M., Casanova J., Raaka B. M., Ghysdael J., Samuels H. H. Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol Endocrinol. 1992 Mar;6(3):429–442. doi: 10.1210/mend.6.3.1316541. [DOI] [PubMed] [Google Scholar]
  13. Giguère V. Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr Rev. 1994 Feb;15(1):61–79. doi: 10.1210/edrv-15-1-61. [DOI] [PubMed] [Google Scholar]
  14. Glass C. K. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994 Jun;15(3):391–407. doi: 10.1210/edrv-15-3-391. [DOI] [PubMed] [Google Scholar]
  15. Glass C. K., Holloway J. M., Devary O. V., Rosenfeld M. G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell. 1988 Jul 29;54(3):313–323. doi: 10.1016/0092-8674(88)90194-8. [DOI] [PubMed] [Google Scholar]
  16. Hoopes B. C., LeBlanc J. F., Hawley D. K. Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. J Biol Chem. 1992 Jun 5;267(16):11539–11547. [PubMed] [Google Scholar]
  17. Horwitz K. B., Jackson T. A., Bain D. L., Richer J. K., Takimoto G. S., Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol. 1996 Oct;10(10):1167–1177. doi: 10.1210/mend.10.10.9121485. [DOI] [PubMed] [Google Scholar]
  18. Joyeux A., Balaguer P., Gagne D., Nicolas J. C. In vitro and in vivo interactions between nuclear receptors at estrogen response elements. J Steroid Biochem Mol Biol. 1996 Aug;58(5-6):507–515. doi: 10.1016/0960-0760(96)00082-9. [DOI] [PubMed] [Google Scholar]
  19. Kato S., Sasaki H., Suzawa M., Masushige S., Tora L., Chambon P., Gronemeyer H. Widely spaced, directly repeated PuGGTCA elements act as promiscuous enhancers for different classes of nuclear receptors. Mol Cell Biol. 1995 Nov;15(11):5858–5867. doi: 10.1128/mcb.15.11.5858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klein-Hitpass L., Kaling M., Ryffel G. U. Synergism of closely adjacent estrogen-responsive elements increases their regulatory potential. J Mol Biol. 1988 Jun 5;201(3):537–544. doi: 10.1016/0022-2836(88)90635-3. [DOI] [PubMed] [Google Scholar]
  21. Klein-Hitpass L., Schorpp M., Wagner U., Ryffel G. U. An estrogen-responsive element derived from the 5' flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell. 1986 Sep 26;46(7):1053–1061. doi: 10.1016/0092-8674(86)90705-1. [DOI] [PubMed] [Google Scholar]
  22. Kliewer S. A., Umesono K., Mangelsdorf D. J., Evans R. M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature. 1992 Jan 30;355(6359):446–449. doi: 10.1038/355446a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klinge C. M., Bambara R. A., Hilf R. Antiestrogen-liganded estrogen receptor interaction with estrogen responsive element DNA in vitro. J Steroid Biochem Mol Biol. 1992 Oct;43(4):249–262. doi: 10.1016/0960-0760(92)90159-g. [DOI] [PubMed] [Google Scholar]
  24. Klinge C. M., Peale F. V., Jr, Hilf R., Bambara R. A., Zain S. Cooperative estrogen receptor interaction with consensus or variant estrogen responsive elements in vitro. Cancer Res. 1992 Mar 1;52(5):1073–1081. [PubMed] [Google Scholar]
  25. Klinge C. M., Traish A. M., Bambara R. A., Hilf R. Dissociation of 4-hydroxytamoxifen, but not estradiol or tamoxifen aziridine, from the estrogen receptor as the receptor binds estrogen response element DNA. J Steroid Biochem Mol Biol. 1996 Jan;57(1-2):51–66. doi: 10.1016/0960-0760(95)00246-4. [DOI] [PubMed] [Google Scholar]
  26. Klinge C. M., Traish A. M., Driscoll M. D., Hilf R., Bambara R. A. Site-directed estrogen receptor antibodies stabilize 4-hydroxytamoxifen ligand, but not estradiol, and indicate ligand-specific differences in the recognition of estrogen response element DNA in vitro. Steroids. 1996 May;61(5):278–289. doi: 10.1016/0039-128x(95)00219-g. [DOI] [PubMed] [Google Scholar]
  27. Kraus W. L., Montano M. M., Katzenellenbogen B. S. Identification of multiple, widely spaced estrogen-responsive regions in the rat progesterone receptor gene. Mol Endocrinol. 1994 Aug;8(8):952–969. doi: 10.1210/mend.8.8.7997237. [DOI] [PubMed] [Google Scholar]
  28. Lehmann J. M., Dawson M. I., Hobbs P. D., Husmann M., Pfahl M. Identification of retinoids with nuclear receptor subtype-selective activities. Cancer Res. 1991 Sep 15;51(18):4804–4809. [PubMed] [Google Scholar]
  29. Leid M., Kastner P., Lyons R., Nakshatri H., Saunders M., Zacharewski T., Chen J. Y., Staub A., Garnier J. M., Mader S. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell. 1992 Jan 24;68(2):377–395. doi: 10.1016/0092-8674(92)90478-u. [DOI] [PubMed] [Google Scholar]
  30. Linney E. Retinoic acid receptors: transcription factors modulating gene regulation, development, and differentiation. Curr Top Dev Biol. 1992;27:309–350. doi: 10.1016/s0070-2153(08)60538-4. [DOI] [PubMed] [Google Scholar]
  31. Love-Schimenti C. D., Gibson D. F., Ratnam A. V., Bikle D. D. Antiestrogen potentiation of antiproliferative effects of vitamin D3 analogues in breast cancer cells. Cancer Res. 1996 Jun 15;56(12):2789–2794. [PubMed] [Google Scholar]
  32. Ludwig L. B., Klinge C. M., Peale F. V., Jr, Bambara R. A., Zain S., Hilf R. A microtiter well assay for quantitative measurement of estrogen receptor binding to estrogen-responsive elements. Mol Endocrinol. 1990 Jul;4(7):1027–1033. doi: 10.1210/mend-4-7-1027. [DOI] [PubMed] [Google Scholar]
  33. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  34. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Marks M. S., Levi B. Z., Segars J. H., Driggers P. H., Hirschfeld S., Nagata T., Appella E., Ozato K. H-2RIIBP expressed from a baculovirus vector binds to multiple hormone response elements. Mol Endocrinol. 1992 Feb;6(2):219–230. doi: 10.1210/mend.6.2.1569965. [DOI] [PubMed] [Google Scholar]
  36. Martinez E., Givel F., Wahli W. The estrogen-responsive element as an inducible enhancer: DNA sequence requirements and conversion to a glucocorticoid-responsive element. EMBO J. 1987 Dec 1;6(12):3719–3727. doi: 10.1002/j.1460-2075.1987.tb02706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Martinez E., Wahli W. Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity. EMBO J. 1989 Dec 1;8(12):3781–3791. doi: 10.1002/j.1460-2075.1989.tb08555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moon R. C., Mehta R. G. Chemoprevention of mammary cancer by retinoids. Basic Life Sci. 1990;52:213–224. doi: 10.1007/978-1-4615-9561-8_18. [DOI] [PubMed] [Google Scholar]
  39. Nagpal S., Friant S., Nakshatri H., Chambon P. RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J. 1993 Jun;12(6):2349–2360. doi: 10.1002/j.1460-2075.1993.tb05889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nunez S. B., Medin J. A., Keller H., Wang K., Ozato K., Wahli W., Segars J. Retinoid X receptor beta and peroxisome proliferator-activated receptor activate an estrogen response element. Recent Prog Horm Res. 1995;50:409–416. doi: 10.1016/b978-0-12-571150-0.50029-9. [DOI] [PubMed] [Google Scholar]
  41. När A. M., Boutin J. M., Lipkin S. M., Yu V. C., Holloway J. M., Glass C. K., Rosenfeld M. G. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell. 1991 Jun 28;65(7):1267–1279. doi: 10.1016/0092-8674(91)90021-p. [DOI] [PubMed] [Google Scholar]
  42. Pavlik E. J., Coulson P. B. Hydroxylapatite "batch" assay for estrogen receptors: increased sensitivity over present receptor assays. J Steroid Biochem. 1976 May;7(5):357–368. doi: 10.1016/0022-4731(76)90095-9. [DOI] [PubMed] [Google Scholar]
  43. Peale F. V., Jr, Ludwig L. B., Zain S., Hilf R., Bambara R. A. Properties of a high-affinity DNA binding site for estrogen receptor. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1038–1042. doi: 10.1073/pnas.85.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Perlmann T., Rangarajan P. N., Umesono K., Evans R. M. Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev. 1993 Jul;7(7B):1411–1422. doi: 10.1101/gad.7.7b.1411. [DOI] [PubMed] [Google Scholar]
  45. Qiu Y., Krishnan V., Pereira F. A., Tsai S. Y., Tsai M. J. Chicken ovalbumin upstream promoter-transcription factors and their regulation. J Steroid Biochem Mol Biol. 1996 Jan;56(1-6):81–85. doi: 10.1016/0960-0760(95)00225-1. [DOI] [PubMed] [Google Scholar]
  46. Quick T. C., Traish A. M., Niles R. M. Characterization of human retinoic acid receptor alpha 1 expressed in recombinant baculovirus-infected Sf9 insect cells. Receptor. 1994 Summer;4(2):65–80. [PubMed] [Google Scholar]
  47. Reginato M. J., Zhang J., Lazar M. A. DNA-independent and DNA-dependent mechanisms regulate the differential heterodimerization of the isoforms of the thyroid hormone receptor with retinoid X receptor. J Biol Chem. 1996 Nov 8;271(45):28199–28205. doi: 10.1074/jbc.271.45.28199. [DOI] [PubMed] [Google Scholar]
  48. Rhodes D., Klug A. Helical periodicity of DNA determined by enzyme digestion. Nature. 1980 Aug 7;286(5773):573–578. doi: 10.1038/286573a0. [DOI] [PubMed] [Google Scholar]
  49. Richard S., Zingg H. H. The human oxytocin gene promoter is regulated by estrogens. J Biol Chem. 1990 Apr 15;265(11):6098–6103. [PubMed] [Google Scholar]
  50. Roman S. D., Clarke C. L., Hall R. E., Alexander I. E., Sutherland R. L. Expression and regulation of retinoic acid receptors in human breast cancer cells. Cancer Res. 1992 Apr 15;52(8):2236–2242. [PubMed] [Google Scholar]
  51. Segars J. H., Marks M. S., Hirschfeld S., Driggers P. H., Martinez E., Grippo J. F., Brown M., Wahli W., Ozato K. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways. Mol Cell Biol. 1993 Apr;13(4):2258–2268. doi: 10.1128/mcb.13.4.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Segars J. H., Marks M. S., Hirschfeld S., Driggers P. H., Martinez E., Grippo J. F., Brown M., Wahli W., Ozato K. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways. Mol Cell Biol. 1993 Apr;13(4):2258–2268. doi: 10.1128/mcb.13.4.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Seiler-Tuyns A., Walker P., Martinez E., Mérillat A. M., Givel F., Wahli W. Identification of estrogen-responsive DNA sequences by transient expression experiments in a human breast cancer cell line. Nucleic Acids Res. 1986 Nov 25;14(22):8755–8770. doi: 10.1093/nar/14.22.8755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sharif M., Privalsky M. L. v-erbA oncogene function in neoplasia correlates with its ability to repress retinoic acid receptor action. Cell. 1991 Sep 6;66(5):885–893. doi: 10.1016/0092-8674(91)90435-2. [DOI] [PubMed] [Google Scholar]
  55. Shulemovich K., Dimaculangan D. D., Katz D., Lazar M. A. DNA bending by thyroid hormone receptor: influence of half-site spacing and RXR. Nucleic Acids Res. 1995 Mar 11;23(5):811–818. doi: 10.1093/nar/23.5.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sucov H. M., Murakami K. K., Evans R. M. Characterization of an autoregulated response element in the mouse retinoic acid receptor type beta gene. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5392–5396. doi: 10.1073/pnas.87.14.5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Suva L. J., Towler D. A., Harada S., Gaub M. P., Rodan G. A. Characterization of retinoic acid- and cell-dependent sequences which regulate zif268 gene expression in osteoblastic cells. Mol Endocrinol. 1994 Nov;8(11):1507–1520. doi: 10.1210/mend.8.11.7877619. [DOI] [PubMed] [Google Scholar]
  58. Thompson K. L., Santon J. B., Shephard L. B., Walton G. M., Gill G. N. A nuclear protein is required for thyroid hormone receptor binding to an inhibitory half-site in the epidermal growth factor receptor promoter. Mol Endocrinol. 1992 Apr;6(4):627–635. doi: 10.1210/mend.6.4.1584225. [DOI] [PubMed] [Google Scholar]
  59. Tini M., Tsui L. C., Giguère V. Heterodimeric interaction of the retinoic acid and thyroid hormone receptors in transcriptional regulation on the gamma F-crystallin everted retinoic acid response element. Mol Endocrinol. 1994 Nov;8(11):1494–1506. doi: 10.1210/mend.8.11.7877618. [DOI] [PubMed] [Google Scholar]
  60. Traish A. M., Wotiz H. H. Monoclonal and polyclonal antibodies to human progesterone receptor peptide-(533-547) recognize a specific site in unactivated (8S) and activated (4S) progesterone receptor and distinguish between intact and proteolyzed receptors. Endocrinology. 1990 Sep;127(3):1167–1175. doi: 10.1210/endo-127-3-1167. [DOI] [PubMed] [Google Scholar]
  61. Tzeng D. Z., Klinge C. M. Phosphorylation of purified estradiol-liganded estrogen receptor by casein kinase II increases estrogen response element binding but does not alter ligand stability. Biochem Biophys Res Commun. 1996 Jun 25;223(3):554–560. doi: 10.1006/bbrc.1996.0933. [DOI] [PubMed] [Google Scholar]
  62. Walker P., Germond J. E., Brown-Luedi M., Givel F., Wahli W. Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Res. 1984 Nov 26;12(22):8611–8626. doi: 10.1093/nar/12.22.8611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Weisz A., Rosales R. Identification of an estrogen response element upstream of the human c-fos gene that binds the estrogen receptor and the AP-1 transcription factor. Nucleic Acids Res. 1990 Sep 11;18(17):5097–5106. doi: 10.1093/nar/18.17.5097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Williams G. R., Harney J. W., Moore D. D., Larsen P. R., Brent G. A. Differential capacity of wild type promoter elements for binding and trans-activation by retinoic acid and thyroid hormone receptors. Mol Endocrinol. 1992 Oct;6(10):1527–1537. doi: 10.1210/mend.6.10.1333048. [DOI] [PubMed] [Google Scholar]
  65. Zechel C., Shen X. Q., Chambon P., Gronemeyer H. Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J. 1994 Mar 15;13(6):1414–1424. doi: 10.1002/j.1460-2075.1994.tb06395.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zhang X. K., Hoffmann B., Tran P. B., Graupner G., Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992 Jan 30;355(6359):441–446. doi: 10.1038/355441a0. [DOI] [PubMed] [Google Scholar]
  67. Zhou-Li F., Albaladejo V., Joly-Pharaboz M. O., Nicolas B., Andre J. Antiestrogens prevent the stimulatory effects of L-triiodothyronine on cell proliferation. Endocrinology. 1992 Mar;130(3):1145–1152. doi: 10.1210/endo.130.3.1537281. [DOI] [PubMed] [Google Scholar]
  68. de Launoit Y., Kiss R. Influence of L-thyroxine, L-triiodothyronine, thyroid stimulating hormone, or estradiol on the cell kinetics of cultured mammary cancer cells. In Vitro Cell Dev Biol. 1989 Jul;25(7):585–591. doi: 10.1007/BF02623627. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES