Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 15;25(10):1913–1919. doi: 10.1093/nar/25.10.1913

Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice.

C J Jolly 1, N Klix 1, M S Neuberger 1
PMCID: PMC146691  PMID: 9115357

Abstract

Hypermutation of immunoglobulin genes is a key process in antibody diversification. Little is known about the mechanism, but the availability of rapid facile assays for monitoring immunoglobulin hypermutation would greatly aid the development of culture systems for hypermutating B cells as well as the screening for individuals deficient in the process. Here we describe two such assays. The first exploits the non-randomness of hypermutation. The existence of a mutational hotspot in the Ser31 codon of a transgenic immunoglobulin V gene allowed us to use PCR to detect transgene hypermutation and identify cell populations in which this mutation had occurred. For animals that do not carry immunoglobulin transgenes, we exploited the fact that hypermutation extends into the region flanking the 3'-side of the rearranged J segments. We show that PCR amplification of the 3'-flank of VDJH rearrangements that involve members of the abundantly-used VHJ558 family provides a large database of mutations where the germline counterpart is unequivocally known. This assay was particularly useful for analysing endogenous immunoglobulin gene hypermutation in several mouse strains. As a rapid assay for monitoring mutation in the JH flanking region, we show that one can exploit the fact that, following denaturation/renaturation, the PCR amplified JH flanking region DNA from germinal centre B cells yields mismatched heteroduplexes which can be quantified in a filter binding assay using the bacterial mismatch repair protein MutS -Wagner et al. (1995) Nucleic Acids Res. 23, 3944-3948-. Such assays enabled us, by example, to show that antibody hypermutation proceeds in the absence of the p53 tumour suppressor gene product.

Full Text

The Full Text of this article is available as a PDF (166.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betz A. G., Milstein C., González-Fernández A., Pannell R., Larson T., Neuberger M. S. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994 Apr 22;77(2):239–248. doi: 10.1016/0092-8674(94)90316-6. [DOI] [PubMed] [Google Scholar]
  2. Betz A. G., Neuberger M. S., Milstein C. Discriminating intrinsic and antigen-selected mutational hotspots in immunoglobulin V genes. Immunol Today. 1993 Aug;14(8):405–411. doi: 10.1016/0167-5699(93)90144-a. [DOI] [PubMed] [Google Scholar]
  3. Betz A. G., Rada C., Pannell R., Milstein C., Neuberger M. S. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2385–2388. doi: 10.1073/pnas.90.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Both G. W., Taylor L., Pollard J. W., Steele E. J. Distribution of mutations around rearranged heavy-chain antibody variable-region genes. Mol Cell Biol. 1990 Oct;10(10):5187–5196. doi: 10.1128/mcb.10.10.5187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner S., Milstein C. Origin of antibody variation. Nature. 1966 Jul 16;211(5046):242–243. doi: 10.1038/211242a0. [DOI] [PubMed] [Google Scholar]
  6. Cox L. S., Lane D. P. Tumour suppressors, kinases and clamps: how p53 regulates the cell cycle in response to DNA damage. Bioessays. 1995 Jun;17(6):501–508. doi: 10.1002/bies.950170606. [DOI] [PubMed] [Google Scholar]
  7. Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. doi: 10.1093/nar/19.14.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donehower L. A., Harvey M., Slagle B. L., McArthur M. J., Montgomery C. A., Jr, Butel J. S., Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992 Mar 19;356(6366):215–221. doi: 10.1038/356215a0. [DOI] [PubMed] [Google Scholar]
  9. Doody G. M., Dempsey P. W., Fearon D. T. Activation of B lymphocytes: integrating signals from CD19, CD22 and Fc gamma RIIb1. Curr Opin Immunol. 1996 Jun;8(3):378–382. doi: 10.1016/s0952-7915(96)80128-2. [DOI] [PubMed] [Google Scholar]
  10. Fairhurst R. M., Valles-Ayoub Y., Neshat M., Braun J. A DNA repair abnormality specific for rearranged immunoglobulin variable genes in germinal center B cells. Mol Immunol. 1996 Feb;33(3):231–244. doi: 10.1016/0161-5890(95)00145-x. [DOI] [PubMed] [Google Scholar]
  11. González-Fernández A., Gupta S. K., Pannell R., Neuberger M. S., Milstein C. Somatic mutation of immunoglobulin lambda chains: a segment of the major intron hypermutates as much as the complementarity-determining regions. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12614–12618. doi: 10.1073/pnas.91.26.12614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. González-Fernández A., Milstein C. Analysis of somatic hypermutation in mouse Peyer's patches using immunoglobulin kappa light-chain transgenes. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9862–9866. doi: 10.1073/pnas.90.21.9862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaartinen M., Griffiths G. M., Markham A. F., Milstein C. mRNA sequences define an unusually restricted IgG response to 2-phenyloxazolone and its early diversification. 1983 Jul 28-Aug 3Nature. 304(5924):320–324. doi: 10.1038/304320a0. [DOI] [PubMed] [Google Scholar]
  14. Kong H., Kucera R. B., Jack W. E. Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem. 1993 Jan 25;268(3):1965–1975. [PubMed] [Google Scholar]
  15. Kwok S., Kellogg D. E., McKinney N., Spasic D., Goda L., Levenson C., Sninsky J. J. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990 Feb 25;18(4):999–1005. doi: 10.1093/nar/18.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lebecque S. G., Gearhart P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene. J Exp Med. 1990 Dec 1;172(6):1717–1727. doi: 10.1084/jem.172.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Keefe T. L., Williams G. T., Davies S. L., Neuberger M. S. Hyperresponsive B cells in CD22-deficient mice. Science. 1996 Nov 1;274(5288):798–801. doi: 10.1126/science.274.5288.798. [DOI] [PubMed] [Google Scholar]
  18. Otipoby K. L., Andersson K. B., Draves K. E., Klaus S. J., Farr A. G., Kerner J. D., Perlmutter R. M., Law C. L., Clark E. A. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature. 1996 Dec 19;384(6610):634–637. doi: 10.1038/384634a0. [DOI] [PubMed] [Google Scholar]
  19. Sharpe M. J., Milstein C., Jarvis J. M., Neuberger M. S. Somatic hypermutation of immunoglobulin kappa may depend on sequences 3' of C kappa and occurs on passenger transgenes. EMBO J. 1991 Aug;10(8):2139–2145. doi: 10.1002/j.1460-2075.1991.tb07748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Skerra A. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. 1992 Jul 25;20(14):3551–3554. doi: 10.1093/nar/20.14.3551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Storb U. The molecular basis of somatic hypermutation of immunoglobulin genes. Curr Opin Immunol. 1996 Apr;8(2):206–214. doi: 10.1016/s0952-7915(96)80059-8. [DOI] [PubMed] [Google Scholar]
  22. Wagner R., Debbie P., Radman M. Mutation detection using immobilized mismatch binding protein (MutS). Nucleic Acids Res. 1995 Oct 11;23(19):3944–3948. doi: 10.1093/nar/23.19.3944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wagner S. D., Neuberger M. S. Somatic hypermutation of immunoglobulin genes. Annu Rev Immunol. 1996;14:441–457. doi: 10.1146/annurev.immunol.14.1.441. [DOI] [PubMed] [Google Scholar]
  24. Weill J. C., Reynaud C. A. Rearrangement/hypermutation/gene conversion: when, where and why? Immunol Today. 1996 Feb;17(2):92–97. doi: 10.1016/0167-5699(96)80586-x. [DOI] [PubMed] [Google Scholar]
  25. de Noronha C. M., Mullins J. I. Amplimers with 3'-terminal phosphorothioate linkages resist degradation by vent polymerase and reduce Taq polymerase mispriming. PCR Methods Appl. 1992 Nov;2(2):131–136. doi: 10.1101/gr.2.2.131. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES