Abstract
Vaccinia topoisomerase forms a covalent protein-DNA intermediate at sites containing the sequence 5'-CCCTT. The T nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that the enzyme catalyzes hydrolysis of the covalent intermediate, resulting in formation of a 3'-phosphate-terminated DNA cleavage product. The hydrolysis reaction is pH-dependent (optimum pH = 9.5) and is slower, by a factor of 10(-5), than the rate of topoisomerase-catalyzed strand transfer to a 5'-OH terminated DNA acceptor strand. Mutants of vaccinia topoisomerase containing serine or threonine in lieu of the active site Tyr-274 form no detectable covalent intermediate and catalyze no detectable DNA hydrolysis. This suggests that hydrolysis occurs subsequent to formation of the covalent protein-DNA adduct and not via direct attack by water on DNA. Vaccinia topoisomerase also catalyzes glycerololysis of the covalent intermediate. The rate of glycerololysis is proportional to glycerol concentration and is optimal at pH 9.5.
Full Text
The Full Text of this article is available as a PDF (121.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Champoux J. J. DNA is linked to the rat liver DNA nicking-closing enzyme by a phosphodiester bond to tyrosine. J Biol Chem. 1981 May 25;256(10):4805–4809. [PubMed] [Google Scholar]
- Cheng C., Wang L. K., Sekiguchi J., Shuman S. Mutational analysis of 39 residues of vaccinia DNA topoisomerase identifies Lys-220, Arg-223, and Asn-228 as important for covalent catalysis. J Biol Chem. 1997 Mar 28;272(13):8263–8269. doi: 10.1074/jbc.272.13.8263. [DOI] [PubMed] [Google Scholar]
- Christiansen K., Knudsen B. R., Westergaard O. The covalent eukaryotic topoisomerase I-DNA intermediate catalyzes pH-dependent hydrolysis and alcoholysis. J Biol Chem. 1994 Apr 15;269(15):11367–11373. [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Lee J., Jayaram M. Mechanism of site-specific recombination. Logic of assembling recombinase catalytic site from fractional active sites. J Biol Chem. 1993 Aug 15;268(23):17564–17570. [PubMed] [Google Scholar]
- Lynn R. M., Bjornsti M. A., Caron P. R., Wang J. C. Peptide sequencing and site-directed mutagenesis identify tyrosine-727 as the active site tyrosine of Saccharomyces cerevisiae DNA topoisomerase I. Proc Natl Acad Sci U S A. 1989 May;86(10):3559–3563. doi: 10.1073/pnas.86.10.3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen B. O., Shuman S. Histidine 265 is important for covalent catalysis by vaccinia topoisomerase and is conserved in all eukaryotic type I enzymes. J Biol Chem. 1997 Feb 14;272(7):3891–3896. doi: 10.1074/jbc.272.7.3891. [DOI] [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Covalent DNA binding by vaccinia topoisomerase results in unpairing of the thymine base 5' of the scissile bond. J Biol Chem. 1996 Aug 9;271(32):19436–19442. doi: 10.1074/jbc.271.32.19436. [DOI] [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Identification of contacts between topoisomerase I and its target DNA by site-specific photocrosslinking. EMBO J. 1996 Jul 1;15(13):3448–3457. [PMC free article] [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Requirements for noncovalent binding of vaccinia topoisomerase I to duplex DNA. Nucleic Acids Res. 1994 Dec 11;22(24):5360–5365. doi: 10.1093/nar/22.24.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekiguchi J., Shuman S. Vaccinia topoisomerase binds circumferentially to DNA. J Biol Chem. 1994 Dec 16;269(50):31731–31734. [PubMed] [Google Scholar]
- Shuman S. DNA strand transfer reactions catalyzed by vaccinia topoisomerase I. J Biol Chem. 1992 Apr 25;267(12):8620–8627. [PubMed] [Google Scholar]
- Shuman S., Golder M., Moss B. Characterization of vaccinia virus DNA topoisomerase I expressed in Escherichia coli. J Biol Chem. 1988 Nov 5;263(31):16401–16407. [PubMed] [Google Scholar]
- Shuman S., Kane E. M., Morham S. G. Mapping the active-site tyrosine of vaccinia virus DNA topoisomerase I. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9793–9797. doi: 10.1073/pnas.86.24.9793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shuman S., Prescott J. Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I. J Biol Chem. 1990 Oct 15;265(29):17826–17836. [PubMed] [Google Scholar]
- Shuman S. Site-specific interaction of vaccinia virus topoisomerase I with duplex DNA. Minimal DNA substrate for strand cleavage in vitro. J Biol Chem. 1991 Jun 15;266(17):11372–11379. [PubMed] [Google Scholar]
- Shuman S., Turner J. Site-specific interaction of vaccinia virus topoisomerase I with base and sugar moieties in duplex DNA. J Biol Chem. 1993 Sep 5;268(25):18943–18950. [PubMed] [Google Scholar]
- Stivers J. T., Shuman S., Mildvan A. S. Vaccinia DNA topoisomerase I: kinetic evidence for general acid-base catalysis and a conformational step. Biochemistry. 1994 Dec 27;33(51):15449–15458. doi: 10.1021/bi00255a027. [DOI] [PubMed] [Google Scholar]
- Stivers J. T., Shuman S., Mildvan A. S. Vaccinia DNA topoisomerase I: single-turnover and steady-state kinetic analysis of the DNA strand cleavage and ligation reactions. Biochemistry. 1994 Jan 11;33(1):327–339. doi: 10.1021/bi00167a043. [DOI] [PubMed] [Google Scholar]
- Wittschieben J., Shuman S. Mutational analysis of vaccinia DNA topoisomerase defines amino acid residues essential for covalent catalysis. J Biol Chem. 1994 Nov 25;269(47):29978–29983. [PubMed] [Google Scholar]
