Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jun 1;25(11):2041–2046. doi: 10.1093/nar/25.11.2041

Distribution of topoisomerase II-mediated cleavage sites and relation to structural and functional landmarks in 830 kb of Drosophila DNA.

R Miassod 1, S V Razin 1, R Hancock 1
PMCID: PMC146713  PMID: 9153300

Abstract

The pattern of sites for cleavage mediated by topoisomerase II was determined in 830 kb of cloned DNA from the Drosophila X chromosome, with the objectives of comparing it with mapped structural and functional landmarks and examining if the correlations with such landmarks reported in individual loci can be generalized to a region approximately 100 times longer. The relative frequencies of topoisomerase II cleavage sites in 247 restriction fragments from 67 clones were quantified by hybridization with probes prepared from DNA fragments which abutted all cleavage sites in each clone, selected through the covalently bound topoisomerase II subunit; the specificity and quantitative nature of this method were demonstrated using a plasmid DNA model. The 12 restriction fragments with strong nuclear scaffold attachment (SAR) activity, of which seven possess autonomous replication (ARS) activity, show statistically strong coincidence or contiguity ( P </=0.11) with regions of high topoisomerase II cleavage site frequency. These regions show no correlation with repetitive sequence or A/T or C/G content and some extend over >10 kb; their sensitivity is therefore unlikely to be due to alternating purine-pyrimidine repeats or regions of Z conformation, which are preferred motifs. The hypothesis that they possess intrinsic curvature is consistent with the similarity of their length and spacing to regions of predicted curvature in the 315 kb DNA of Saccharomyces cerevisiae chromosome III and with the reported strong binding preference of topoisomerase II for curved DNA. The topoisomerase II cleavage pattern in this DNA further shows that its relationships to functional properties seen in individual loci, especially to MAR/SAR and ARS activity and to the restricted accessibility of DNA to topoisomerase II in vivo, can be generalized to much longer regions of the genome.

Full Text

The Full Text of this article is available as a PDF (158.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Käs E., Laemmli U. K. Preferential, cooperative binding of DNA topoisomerase II to scaffold-associated regions. EMBO J. 1989 Dec 20;8(13):3997–4006. doi: 10.1002/j.1460-2075.1989.tb08582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen A. H., Christiansen K., Zechiedrich E. L., Jensen P. S., Osheroff N., Westergaard O. Strand specificity of the topoisomerase II mediated double-stranded DNA cleavage reaction. Biochemistry. 1989 Jul 25;28(15):6237–6244. doi: 10.1021/bi00441a015. [DOI] [PubMed] [Google Scholar]
  3. Anderson J. N. Detection, sequence patterns and function of unusual DNA structures. Nucleic Acids Res. 1986 Nov 11;14(21):8513–8533. doi: 10.1093/nar/14.21.8513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arndt-Jovin D. J., Udvardy A., Garner M. M., Ritter S., Jovin T. M. Z-DNA binding and inhibition by GTP of Drosophila topoisomerase II. Biochemistry. 1993 May 11;32(18):4862–4872. doi: 10.1021/bi00069a023. [DOI] [PubMed] [Google Scholar]
  5. Bechert T., Diekmann S., Arndt-Jovin D. J. Human 170 kDa and 180 kDa topoisomerases II bind preferentially to curved and left-handed linear DNA. J Biomol Struct Dyn. 1994 Dec;12(3):605–623. doi: 10.1080/07391102.1994.10508762. [DOI] [PubMed] [Google Scholar]
  6. Blasquez V. C., Sperry A. O., Cockerill P. N., Garrard W. T. Protein:DNA interactions at chromosomal loop attachment sites. Genome. 1989;31(2):503–509. doi: 10.1139/g89-098. [DOI] [PubMed] [Google Scholar]
  7. Boulikas T. Chromatin domains and prediction of MAR sequences. Int Rev Cytol. 1995;162A:279–388. doi: 10.1016/s0074-7696(08)61234-6. [DOI] [PubMed] [Google Scholar]
  8. Brun C., Dang Q., Miassod R. Studies of an 800-kilobase DNA stretch of the Drosophila X chromosome: comapping of a subclass of scaffold-attached regions with sequences able to replicate autonomously in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Oct;10(10):5455–5463. doi: 10.1128/mcb.10.10.5455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brun C., Jullien N., Jacobzone M., Gautier C., Miassod R. SARs, ARSs, and A,T-rich regions evidenced by restriction mapping on an 835-kb DNA fragment from Drosophila. Exp Cell Res. 1995 Oct;220(2):338–347. doi: 10.1006/excr.1995.1324. [DOI] [PubMed] [Google Scholar]
  10. Capranico G., De Isabella P., Tinelli S., Bigioni M., Zunino F. Similar sequence specificity of mitoxantrone and VM-26 stimulation of in vitro DNA cleavage by mammalian DNA topoisomerase II. Biochemistry. 1993 Mar 30;32(12):3038–3046. doi: 10.1021/bi00063a015. [DOI] [PubMed] [Google Scholar]
  11. Chung I. K., Mehta V. B., Spitzner J. R., Muller M. T. Eukaryotic topoisomerase II cleavage of parallel stranded DNA tetraplexes. Nucleic Acids Res. 1992 Apr 25;20(8):1973–1977. doi: 10.1093/nar/20.8.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cockerill P. N., Garrard W. T. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell. 1986 Jan 31;44(2):273–282. doi: 10.1016/0092-8674(86)90761-0. [DOI] [PubMed] [Google Scholar]
  13. Darby M. K., Herrera R. E., Vosberg H. P., Nordheim A. DNA topoisomerase II cleaves at specific sites in the 5' flanking region of c-fos proto-oncogenes in vitro. EMBO J. 1986 Sep;5(9):2257–2265. doi: 10.1002/j.1460-2075.1986.tb04493.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Froelich-Ammon S. J., Gale K. C., Osheroff N. Site-specific cleavage of a DNA hairpin by topoisomerase II. DNA secondary structure as a determinant of enzyme recognition/cleavage. J Biol Chem. 1994 Mar 11;269(10):7719–7725. [PubMed] [Google Scholar]
  15. Glikin G. C., Jovin T. M., Arndt-Jovin D. J. Interactions of Drosophila DNA topoisomerase II with left-handed Z-DNA in supercoiled minicircles. Nucleic Acids Res. 1991 Dec;19(25):7139–7144. doi: 10.1093/nar/19.25.7139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Homberger H. P. Bent DNA is a structural feature of scaffold-attached regions in Drosophila melanogaster interphase nuclei. Chromosoma. 1989 Aug;98(2):99–104. doi: 10.1007/BF00291044. [DOI] [PubMed] [Google Scholar]
  17. Howard M. T., Griffith J. D. A cluster of strong topoisomerase II cleavage sites is located near an integrated human immunodeficiency virus. J Mol Biol. 1993 Aug 20;232(4):1060–1068. doi: 10.1006/jmbi.1993.1460. [DOI] [PubMed] [Google Scholar]
  18. Iarovaia O., Hancock R., Lagarkova M., Miassod R., Razin S. V. Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome by the topoisomerase II-mediated DNA loop excision protocol. Mol Cell Biol. 1996 Jan;16(1):302–308. doi: 10.1128/mcb.16.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. King G. J. Stability, structure and complexity of yeast chromosome III. Nucleic Acids Res. 1993 Sep 11;21(18):4239–4245. doi: 10.1093/nar/21.18.4239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Käs E., Laemmli U. K. In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J. 1992 Feb;11(2):705–716. doi: 10.1002/j.1460-2075.1992.tb05103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu L. F. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  22. Muller M. T., Mehta V. B. DNase I hypersensitivity is independent of endogenous topoisomerase II activity during chicken erythrocyte differentiation. Mol Cell Biol. 1988 Sep;8(9):3661–3669. doi: 10.1128/mcb.8.9.3661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nahon E., Best-Belpomme M., Saucier J. M. Analysis of the DNA topoisomerase-II-mediated cleavage of the long terminal repeat of Drosophila 1731 retrotransposon. Eur J Biochem. 1993 Nov 15;218(1):95–102. doi: 10.1111/j.1432-1033.1993.tb18355.x. [DOI] [PubMed] [Google Scholar]
  24. Nielsen T., Bell D., Lamoureux C., Zannis-Hadjopoulos M., Price G. A reproducible method for identification of human genomic DNA autonomously replicating sequences. Mol Gen Genet. 1994 Feb;242(3):280–288. doi: 10.1007/BF00280417. [DOI] [PubMed] [Google Scholar]
  25. Pommier Y., Capranico G., Orr A., Kohn K. W. Distribution of topoisomerase II cleavage sites in simian virus 40 DNA and the effects of drugs. J Mol Biol. 1991 Dec 20;222(4):909–924. doi: 10.1016/0022-2836(91)90585-t. [DOI] [PubMed] [Google Scholar]
  26. Pommier Y., Capranico G., Orr A., Kohn K. W. Local base sequence preferences for DNA cleavage by mammalian topoisomerase II in the presence of amsacrine or teniposide. Nucleic Acids Res. 1991 Nov 11;19(21):5973–5980. doi: 10.1093/nar/19.21.5973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pommier Y., Orr A., Kohn K. W., Riou J. F. Differential effects of amsacrine and epipodophyllotoxins on topoisomerase II cleavage in the human c-myc protooncogene. Cancer Res. 1992 Jun 1;52(11):3125–3130. [PubMed] [Google Scholar]
  28. Pommier Y., Poddevin B., Gupta M., Jenkins J. DNA topoisomerases I & II cleavage sites in the type 1 human immunodeficiency virus (HIV-1) DNA promoter region. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1601–1609. doi: 10.1006/bbrc.1994.2850. [DOI] [PubMed] [Google Scholar]
  29. Razin S. V., Petrov P., Hancock R. Precise localization of the alpha-globin gene cluster within one of the 20- to 300-kilobase DNA fragments released by cleavage of chicken chromosomal DNA at topoisomerase II sites in vivo: evidence that the fragments are DNA loops or domains. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8515–8519. doi: 10.1073/pnas.88.19.8515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Razin S. V., Vassetzky Y. S., Hancock R. Nuclear matrix attachment regions and topoisomerase II binding and reaction sites in the vicinity of a chicken DNA replication origin. Biochem Biophys Res Commun. 1991 May 31;177(1):265–270. doi: 10.1016/0006-291x(91)91977-k. [DOI] [PubMed] [Google Scholar]
  31. Roca J., Berger J. M., Wang J. C. On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices. J Biol Chem. 1993 Jul 5;268(19):14250–14255. [PubMed] [Google Scholar]
  32. Rowe T. C., Wang J. C., Liu L. F. In vivo localization of DNA topoisomerase II cleavage sites on Drosophila heat shock chromatin. Mol Cell Biol. 1986 Apr;6(4):985–992. doi: 10.1128/mcb.6.4.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sander M., Hsieh T. S. Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site. Nucleic Acids Res. 1985 Feb 25;13(4):1057–1072. doi: 10.1093/nar/13.4.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sander M., Hsieh T. Double strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J Biol Chem. 1983 Jul 10;258(13):8421–8428. [PubMed] [Google Scholar]
  35. Shin C. G., Snapka R. M. Patterns of strongly protein-associated simian virus 40 DNA replication intermediates resulting from exposures to specific topoisomerase poisons. Biochemistry. 1990 Dec 11;29(49):10934–10939. doi: 10.1021/bi00501a011. [DOI] [PubMed] [Google Scholar]
  36. Spitzner J. R., Chung I. K., Muller M. T. Determination of 5' and 3' DNA triplex interference boundaries reveals the core DNA binding sequence for topoisomerase II. J Biol Chem. 1995 Mar 17;270(11):5932–5943. doi: 10.1074/jbc.270.11.5932. [DOI] [PubMed] [Google Scholar]
  37. Spitzner J. R., Chung I. K., Muller M. T. Eukaryotic topoisomerase II preferentially cleaves alternating purine-pyrimidine repeats. Nucleic Acids Res. 1990 Jan 11;18(1):1–11. doi: 10.1093/nar/18.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Spitzner J. R., Muller M. T. A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res. 1988 Jun 24;16(12):5533–5556. doi: 10.1093/nar/16.12.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Surdej P., Brandli D., Miassod R. Scaffold-associated regions and repeated or cross-hybridizing sequences on an 800 kilobase DNA stretch of the Drosophila X chromosome. Biol Cell. 1991;73(2-3):111–120. doi: 10.1016/0248-4900(91)90093-3. [DOI] [PubMed] [Google Scholar]
  40. Surdej P., Got C., Miassod R. Developmental expression pattern of a 800 kb DNA continuum cloned from the Drosophila X chromosome 14B-15B region. Biol Cell. 1990;68(2):105–118. doi: 10.1016/0248-4900(90)90295-e. [DOI] [PubMed] [Google Scholar]
  41. Surdej P., Got C., Rosset R., Miassod R. Supragenic loop organization: mapping in Drosophila embryos, of scaffold-associated regions on a 800 kilobase DNA continuum cloned from the 14B-15B first chromosome region. Nucleic Acids Res. 1990 Jul 11;18(13):3713–3722. doi: 10.1093/nar/18.13.3713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thioulouse J. Statistical analysis and graphical display of multivariate data on the Macintosh. Comput Appl Biosci. 1989 Oct;5(4):287–292. doi: 10.1093/bioinformatics/5.4.287. [DOI] [PubMed] [Google Scholar]
  43. Udvardy A., Maine E., Schedl P. The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J Mol Biol. 1985 Sep 20;185(2):341–358. doi: 10.1016/0022-2836(85)90408-5. [DOI] [PubMed] [Google Scholar]
  44. Udvardy A., Schedl P. Chromatin structure, not DNA sequence specificity, is the primary determinant of topoisomerase II sites of action in vivo. Mol Cell Biol. 1991 Oct;11(10):4973–4984. doi: 10.1128/mcb.11.10.4973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Udvardy A., Schedl P., Sander M., Hsieh T. S. Novel partitioning of DNA cleavage sites for Drosophila topoisomerase II. Cell. 1985 Apr;40(4):933–941. doi: 10.1016/0092-8674(85)90353-8. [DOI] [PubMed] [Google Scholar]
  46. Udvardy A., Schedl P., Sander M., Hsieh T. S. Topoisomerase II cleavage in chromatin. J Mol Biol. 1986 Sep 20;191(2):231–246. doi: 10.1016/0022-2836(86)90260-3. [DOI] [PubMed] [Google Scholar]
  47. Zannis-Hadjopoulos M., Kaufmann G., Martin R. G. Mammalian DNA enriched for replication origins is enriched for snap-back sequences. J Mol Biol. 1984 Nov 15;179(4):577–586. doi: 10.1016/0022-2836(84)90156-6. [DOI] [PubMed] [Google Scholar]
  48. Zechiedrich E. L., Osheroff N. Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J. 1990 Dec;9(13):4555–4562. doi: 10.1002/j.1460-2075.1990.tb07908.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. von Kries J. P., Phi-Van L., Diekmann S., Strätling W. H. A non-curved chicken lysozyme 5' matrix attachment site is 3' followed by a strongly curved DNA sequence. Nucleic Acids Res. 1990 Jul 11;18(13):3881–3885. doi: 10.1093/nar/18.13.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES