Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jun 1;25(11):2167–2173. doi: 10.1093/nar/25.11.2167

Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA.

U Koppelhus 1, V Zachar 1, P E Nielsen 1, X Liu 1, J Eugen-Olsen 1, P Ebbesen 1
PMCID: PMC146729  PMID: 9153317

Abstract

We have tested the inhibitory potential of peptide nucleic acid (PNA) on in vitro reverse transcription of the HIV-1 gag gene. PNA was designed to target different regions of the HIV-1 gag gene and the effect on reverse transcription by HIV-1, MMLV and AMV reverse transcriptases (RTs) was investigated. We found that a bis-PNA (parallel antisense 10mer linked to antiparallel antisense 10mer) was superior to both the parallel antisense 10mer and antiparallel antisense 10mer in inhibiting reverse transcription of the gene, thus indicating triplex formation at the target sequence. A complete arrest of reverse transcription was obtained at approximately 6-fold molar excess of the bis-PNA with respect to the gag RNA. At this molar ratio we found no effect on in vitro translation of gag RNA. A 15mer duplex-forming PNA was also found to inhibit reverse transcription at very low molar ratios of PNA/ gag RNA. Specificity of the inhibition of reverse transcription by PNA was confirmed by RNA sequencing, which revealed that all tested RTs were stopped by the PNA/RNA complex at the predicted site. We propose that the effect of PNA is exclusively due to steric hindrance, as we found no signs of RNA degradation that would indicate PNA-mediated RNase H activation of the tested RTs. In conclusion, PNA appears to have a potential to become a specific and efficient inhibitor of reverse transcription in vivo , provided sufficient intracellular levels are achievable.

Full Text

The Full Text of this article is available as a PDF (142.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bordier B., Hélène C., Barr P. J., Litvak S., Sarih-Cottin L. In vitro effect of antisense oligonucleotides on human immunodeficiency virus type 1 reverse transcription. Nucleic Acids Res. 1992 Nov 25;20(22):5999–6006. doi: 10.1093/nar/20.22.5999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bouziane M., Cherny D. I., Mouscadet J. F., Auclair C. Alternate strand DNA triple helix-mediated inhibition of HIV-1 U5 long terminal repeat integration in vitro. J Biol Chem. 1996 Apr 26;271(17):10359–10364. doi: 10.1074/jbc.271.17.10359. [DOI] [PubMed] [Google Scholar]
  3. Christensen L., Fitzpatrick R., Gildea B., Petersen K. H., Hansen H. F., Koch T., Egholm M., Buchardt O., Nielsen P. E., Coull J. Solid-phase synthesis of peptide nucleic acids. J Pept Sci. 1995 May-Jun;1(3):175–183. doi: 10.1002/psc.310010304. [DOI] [PubMed] [Google Scholar]
  4. DeStefano J. J. Interaction of human immunodeficiency virus nucleocapsid protein with a structure mimicking a replication intermediate. Effects on stability, reverse transcriptase binding, and strand transfer. J Biol Chem. 1996 Jul 5;271(27):16350–16356. [PubMed] [Google Scholar]
  5. Demidov V. V., Potaman V. N., Frank-Kamenetskii M. D., Egholm M., Buchard O., Sönnichsen S. H., Nielsen P. E. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol. 1994 Sep 15;48(6):1310–1313. doi: 10.1016/0006-2952(94)90171-6. [DOI] [PubMed] [Google Scholar]
  6. Dudding L. R., Harington A., Mizrahi V. Endoribonucleolytic cleavage of RNA: oligodeoxynucleotide hybrids by the ribonuclease H activity of HIV-1 reverse transcriptase. Biochem Biophys Res Commun. 1990 Feb 28;167(1):244–250. doi: 10.1016/0006-291x(90)91757-j. [DOI] [PubMed] [Google Scholar]
  7. Egholm M., Christensen L., Dueholm K. L., Buchardt O., Coull J., Nielsen P. E. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 1995 Jan 25;23(2):217–222. doi: 10.1093/nar/23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erickson-Viitanen S., Manfredi J., Viitanen P., Tribe D. E., Tritch R., Hutchison C. A., 3rd, Loeb D. D., Swanstrom R. Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res Hum Retroviruses. 1989 Dec;5(6):577–591. doi: 10.1089/aid.1989.5.577. [DOI] [PubMed] [Google Scholar]
  9. Ghosh M. K., Cohen J. S. Oligodeoxynucleotides as antisense inhibitors of gene expression. Prog Nucleic Acid Res Mol Biol. 1992;42:79–126. doi: 10.1016/s0079-6603(08)60574-7. [DOI] [PubMed] [Google Scholar]
  10. Gura T. Antisense has growing pains. Science. 1995 Oct 27;270(5236):575–577. doi: 10.1126/science.270.5236.575. [DOI] [PubMed] [Google Scholar]
  11. Hanvey J. C., Peffer N. J., Bisi J. E., Thomson S. A., Cadilla R., Josey J. A., Ricca D. J., Hassman C. F., Bonham M. A., Au K. G. Antisense and antigene properties of peptide nucleic acids. Science. 1992 Nov 27;258(5087):1481–1485. doi: 10.1126/science.1279811. [DOI] [PubMed] [Google Scholar]
  12. Hatta T., Kim S. G., Nakashima H., Yamamoto N., Sakamoto K., Yokoyama S., Takaku H. Mechanisms of the inhibition of reverse transcription by unmodified and modified antisense oligonucleotides. FEBS Lett. 1993 Sep 13;330(2):161–164. doi: 10.1016/0014-5793(93)80264-u. [DOI] [PubMed] [Google Scholar]
  13. Hatta T., Takai K., Yokoyama S., Nakashima H., Yamamoto N., Takaku H. Phosphorothioate oligonucleotides block reverse transcription by the Rnase H activity associated with the HIV-1 polymerase. Biochem Biophys Res Commun. 1995 Jun 26;211(3):1041–1046. doi: 10.1006/bbrc.1995.1916. [DOI] [PubMed] [Google Scholar]
  14. Idriss H., Stammers D. K. Inhibition of HIV-1 reverse transcriptase by defined template/primer DNA oligonucleotides: effect of template length and binding characteristics. J Enzyme Inhib. 1994;8(2):97–112. doi: 10.3109/14756369409020193. [DOI] [PubMed] [Google Scholar]
  15. Ji X., Klarmann G. J., Preston B. D. Effect of human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein on HIV-1 reverse transcriptase activity in vitro. Biochemistry. 1996 Jan 9;35(1):132–143. doi: 10.1021/bi951707e. [DOI] [PubMed] [Google Scholar]
  16. Knudsen H., Nielsen P. E. Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res. 1996 Feb 1;24(3):494–500. doi: 10.1093/nar/24.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li X., Quan Y., Arts E. J., Li Z., Preston B. D., de Rocquigny H., Roques B. P., Darlix J. L., Kleiman L., Parniak M. A. Human immunodeficiency virus Type 1 nucleocapsid protein (NCp7) directs specific initiation of minus-strand DNA synthesis primed by human tRNA(Lys3) in vitro: studies of viral RNA molecules mutated in regions that flank the primer binding site. J Virol. 1996 Aug;70(8):4996–5004. doi: 10.1128/jvi.70.8.4996-5004.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Monia B. P., Johnston J. F., Geiger T., Muller M., Fabbro D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med. 1996 Jun;2(6):668–675. doi: 10.1038/nm0696-668. [DOI] [PubMed] [Google Scholar]
  19. Norton J. C., Piatyszek M. A., Wright W. E., Shay J. W., Corey D. R. Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol. 1996 May;14(5):615–619. doi: 10.1038/nbt0596-615. [DOI] [PubMed] [Google Scholar]
  20. Pauwels R., Andries K., Desmyter J., Schols D., Kukla M. J., Breslin H. J., Raeymaeckers A., Van Gelder J., Woestenborghs R., Heykants J. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature. 1990 Feb 1;343(6257):470–474. doi: 10.1038/343470a0. [DOI] [PubMed] [Google Scholar]
  21. Rodríguez-Rodríguez L., Tsuchihashi Z., Fuentes G. M., Bambara R. A., Fay P. J. Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro. J Biol Chem. 1995 Jun 23;270(25):15005–15011. doi: 10.1074/jbc.270.25.15005. [DOI] [PubMed] [Google Scholar]
  22. Stein C. A., Tonkinson J. L., Yakubov L. Phosphorothioate oligodeoxynucleotides--anti-sense inhibitors of gene expression? Pharmacol Ther. 1991 Dec;52(3):365–384. doi: 10.1016/0163-7258(91)90032-h. [DOI] [PubMed] [Google Scholar]
  23. Takahashi H., Matsuda M., Kojima A., Sata T., Andoh T., Kurata T., Nagashima K., Hall W. W. Human immunodeficiency virus type 1 reverse transcriptase: enhancement of activity by interaction with cellular topoisomerase I. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5694–5698. doi: 10.1073/pnas.92.12.5694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Volkmann S., Dannull J., Moelling K. The polypurine tract, PPT, of HIV as target for antisense and triple-helix-forming oligonucleotides. Biochimie. 1993;75(1-2):71–78. doi: 10.1016/0300-9084(93)90027-p. [DOI] [PubMed] [Google Scholar]
  25. Zachar V., Spire B., Hirsch I., Chermann J. C., Ebbesen P. Human transformed trophoblast-derived cells lacking CD4 receptor exhibit restricted permissiveness for human immunodeficiency virus type 1. J Virol. 1991 Apr;65(4):2102–2107. doi: 10.1128/jvi.65.4.2102-2107.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES