Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jun 1;25(11):2213–2220. doi: 10.1093/nar/25.11.2213

Molecular and functional characterization of the promoter region of the mouse LDH/C gene: enhancer-assisted, Sp1-mediated transcriptional activation.

J Yang 1, K Thomas 1
PMCID: PMC146730  PMID: 9153323

Abstract

Molecular and functional studies of the LDH/C 5' upstream promoter elements were undertaken to elucidate the molecular mechanisms involved in temporal activation of LDH/C gene expression in differentiating germ cells. Ligation mediated-PCR (LM-PCR) gene walking techniques were exploited to isolate a 2.1 kb fragment of the mouse LDH/C 5' promoter region. DNA sequence analysis of this isolated genomic fragment indicated that the mouse LDH/C promoter contained TATA and CCAT boxes as well as a GC-box (Sp1-binding site) situated upstream from the transcription start site. PCR-based in vivo DNase I footprinting analysis of a 600 bp fragment of the proximal LDH/C promoter region (-524/+38) in isolated mouse pachytene spermatocytes identified a single footprint over the GC-box motif. Three DNase I hypersensitive sites were also detectable in vivo, in a region containing (CT)n(GA)n repeats upstream from the CCAT box domain. Functional characterization of the promoter region was carried out in a rat C6 glioma cell line and an SV40 transformed germ cell line (GC-1 spg) using wild-type and mutated LDH/C promoter CAT reporter constructs. These studies provide experimental evidence suggesting that transcriptional activation of the LDH/C promoter is regulated by enhancer-mediated coactivation of the Sp1 proteins bound to the GC-box motif footprinted in vivo in pachytene spermatocytes.

Full Text

The Full Text of this article is available as a PDF (171.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker P. B. The establishment of active promoters in chromatin. Bioessays. 1994 Aug;16(8):541–547. doi: 10.1002/bies.950160807. [DOI] [PubMed] [Google Scholar]
  2. Blackshaw A. W., Elkington J. S. Developmental changes in lactate dehydrogenase isoenzymes in the testis of the immature rat. J Reprod Fertil. 1970 Jun;22(1):69–75. doi: 10.1530/jrf.0.0220069. [DOI] [PubMed] [Google Scholar]
  3. Chen L. I., Nishinaka T., Kwan K., Kitabayashi I., Yokoyama K., Fu Y. H., Grünwald S., Chiu R. The retinoblastoma gene product RB stimulates Sp1-mediated transcription by liberating Sp1 from a negative regulator. Mol Cell Biol. 1994 Jul;14(7):4380–4389. doi: 10.1128/mcb.14.7.4380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen X., Wright K. L., Berkowitz E. A., Azizkhan J. C., Ting J. P., Lee D. C. Protein interactions at Sp1-like sites in the TGF alpha promoter as visualized by in vivo genomic footprinting. Oncogene. 1994 Nov;9(11):3179–3187. [PubMed] [Google Scholar]
  5. Cooker L. A., Brooke C. D., Kumari M., Hofmann M. C., Millán J. L., Goldberg E. Genomic structure and promoter activity of the human testis lactate dehydrogenase gene. Biol Reprod. 1993 Jun;48(6):1309–1319. doi: 10.1095/biolreprod48.6.1309. [DOI] [PubMed] [Google Scholar]
  6. Ebert S. N., Wong D. L. Differential activation of the rat phenylethanolamine N-methyltransferase gene by Sp1 and Egr-1. J Biol Chem. 1995 Jul 21;270(29):17299–17305. doi: 10.1074/jbc.270.29.17299. [DOI] [PubMed] [Google Scholar]
  7. Forsberg M., Ström A. C., Lillhager P., Westin G. Activation functions of transcription factor Sp1 at U2 snRNA and TATA box promoters. Biol Chem Hoppe Seyler. 1995 Nov;376(11):661–669. doi: 10.1515/bchm3.1995.376.11.661. [DOI] [PubMed] [Google Scholar]
  8. Fukasawa K. M., Li S. S. Nucleotide sequence of the putative regulatory region of mouse lactate dehydrogenase-A gene. Biochem J. 1986 Apr 15;235(2):435–439. doi: 10.1042/bj2350435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gerber H. P., Hagmann M., Seipel K., Georgiev O., West M. A., Litingtung Y., Schaffner W., Corden J. L. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature. 1995 Apr 13;374(6523):660–662. doi: 10.1038/374660a0. [DOI] [PubMed] [Google Scholar]
  10. Gilmour D. S., Thomas G. H., Elgin S. C. Drosophila nuclear proteins bind to regions of alternating C and T residues in gene promoters. Science. 1989 Sep 29;245(4925):1487–1490. doi: 10.1126/science.2781290. [DOI] [PubMed] [Google Scholar]
  11. Hagen G., Müller S., Beato M., Suske G. Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. Nucleic Acids Res. 1992 Nov 11;20(21):5519–5525. doi: 10.1093/nar/20.21.5519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagen G., Müller S., Beato M., Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. doi: 10.1002/j.1460-2075.1994.tb06695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Handy D. E., Zanella M. T., Kanemaru A., Tavares A., Flordellis C., Gavras H. A negative regulatory element in the promoter region of the rat alpha 2A-adrenergic receptor gene overlaps an SP1 consensus binding site. Biochem J. 1995 Oct 15;311(Pt 2):541–547. doi: 10.1042/bj3110541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hawtrey C., Goldberg E. Differential synthesis of LDH in mouse testes. Ann N Y Acad Sci. 1968 Jun 14;151(1):611–615. doi: 10.1111/j.1749-6632.1968.tb11921.x. [DOI] [PubMed] [Google Scholar]
  15. Hofmann M. C., Narisawa S., Hess R. A., Millán J. L. Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Exp Cell Res. 1992 Aug;201(2):417–435. doi: 10.1016/0014-4827(92)90291-f. [DOI] [PubMed] [Google Scholar]
  16. Jackson S. P., Tjian R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell. 1988 Oct 7;55(1):125–133. doi: 10.1016/0092-8674(88)90015-3. [DOI] [PubMed] [Google Scholar]
  17. Janson L., Bark C., Pettersson U. Identification of proteins interacting with the enhancer of human U2 small nuclear RNA genes. Nucleic Acids Res. 1987 Jul 10;15(13):4997–5016. doi: 10.1093/nar/15.13.4997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Janson L., Weller P., Pettersson U. Nuclear factor I can functionally replace transcription factor Sp1 in a U2 small nuclear RNA gene enhancer. J Mol Biol. 1989 Jan 20;205(2):387–396. doi: 10.1016/0022-2836(89)90349-5. [DOI] [PubMed] [Google Scholar]
  19. Li R., Knight J. D., Jackson S. P., Tjian R., Botchan M. R. Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. Cell. 1991 May 3;65(3):493–505. doi: 10.1016/0092-8674(91)90467-d. [DOI] [PubMed] [Google Scholar]
  20. Li S. S., O'Brien D. A., Hou E. W., Versola J., Rockett D. L., Eddy E. M. Differential activity and synthesis of lactate dehydrogenase isozymes A (muscle), B (heart), and C (testis) in mouse spermatogenic cells. Biol Reprod. 1989 Jan;40(1):173–180. doi: 10.1095/biolreprod40.1.173. [DOI] [PubMed] [Google Scholar]
  21. Lu Q., Wallrath L. L., Allan B. D., Glaser R. L., Lis J. T., Elgin S. C. Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene. J Mol Biol. 1992 Jun 20;225(4):985–998. doi: 10.1016/0022-2836(92)90099-6. [DOI] [PubMed] [Google Scholar]
  22. Markert C. L. Lactate Dehydrogenase Isozymes: Dissociation and Recombination of Subunits. Science. 1963 Jun 21;140(3573):1329–1330. doi: 10.1126/science.140.3573.1329. [DOI] [PubMed] [Google Scholar]
  23. Neish A. S., Khachigian L. M., Park A., Baichwal V. R., Collins T. Sp1 is a component of the cytokine-inducible enhancer in the promoter of vascular cell adhesion molecule-1. J Biol Chem. 1995 Dec 1;270(48):28903–28909. doi: 10.1074/jbc.270.48.28903. [DOI] [PubMed] [Google Scholar]
  24. O'Brien T., Hardin S., Greenleaf A., Lis J. T. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature. 1994 Jul 7;370(6484):75–77. doi: 10.1038/370075a0. [DOI] [PubMed] [Google Scholar]
  25. Pugh B. F., Tjian R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell. 1990 Jun 29;61(7):1187–1197. doi: 10.1016/0092-8674(90)90683-6. [DOI] [PubMed] [Google Scholar]
  26. Romrell L. J., Bellvé A. R., Fawcett D. W. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol. 1976 Mar;49(1):119–131. doi: 10.1016/0012-1606(76)90262-1. [DOI] [PubMed] [Google Scholar]
  27. Saffer J. D., Jackson S. P., Annarella M. B. Developmental expression of Sp1 in the mouse. Mol Cell Biol. 1991 Apr;11(4):2189–2199. doi: 10.1128/mcb.11.4.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sakai I., Sharief F. S., Li S. S. Molecular cloning and nucleotide sequence of the cDNA for sperm-specific lactate dehydrogenase-C from mouse. Biochem J. 1987 Mar 1;242(2):619–622. doi: 10.1042/bj2420619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schaufele F., West B. L., Reudelhuber T. L. Overlapping Pit-1 and Sp1 binding sites are both essential to full rat growth hormone gene promoter activity despite mutually exclusive Pit-1 and Sp1 binding. J Biol Chem. 1990 Oct 5;265(28):17189–17196. [PubMed] [Google Scholar]
  30. Seipel K., Georgiev O., Schaffner W. Different activation domains stimulate transcription from remote ('enhancer') and proximal ('promoter') positions. EMBO J. 1992 Dec;11(13):4961–4968. doi: 10.1002/j.1460-2075.1992.tb05603.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Short M. L., Huang D., Milkowski D. M., Short S., Kunstman K., Soong C. J., Chung K. C., Jungmann R. A. Analysis of the rat lactate dehydrogenase A subunit gene promoter/regulatory region. Biochem J. 1994 Dec 1;304(Pt 2):391–398. doi: 10.1042/bj3040391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Short S., Short M. L., Milkowski D. M., Jungmann R. A. Functional analysis of cis- and trans-regulatory elements of the lactate dehydrogenase A subunit promoter by in vitro transcription. J Biol Chem. 1991 Nov 25;266(33):22164–22172. [PubMed] [Google Scholar]
  33. Ström A. C., Forsberg M., Lillhager P., Westin G. The transcription factors Sp1 and Oct-1 interact physically to regulate human U2 snRNA gene expression. Nucleic Acids Res. 1996 Jun 1;24(11):1981–1986. doi: 10.1093/nar/24.11.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thomas K., Del Mazo J., Eversole P., Bellvé A., Hiraoka Y., Li S. S., Simon M. Developmental regulation of expression of the lactate dehydrogenase (LDH) multigene family during mouse spermatogenesis. Development. 1990 Jun;109(2):483–493. doi: 10.1242/dev.109.2.483. [DOI] [PubMed] [Google Scholar]
  35. Tsukiyama T., Becker P. B., Wu C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature. 1994 Feb 10;367(6463):525–532. doi: 10.1038/367525a0. [DOI] [PubMed] [Google Scholar]
  36. Wallrath L. L., Lu Q., Granok H., Elgin S. C. Architectural variations of inducible eukaryotic promoters: preset and remodeling chromatin structures. Bioessays. 1994 Mar;16(3):165–170. doi: 10.1002/bies.950160306. [DOI] [PubMed] [Google Scholar]
  37. Zhang D. E., Hetherington C. J., Tan S., Dziennis S. E., Gonzalez D. A., Chen H. M., Tenen D. G. Sp1 is a critical factor for the monocytic specific expression of human CD14. J Biol Chem. 1994 Apr 15;269(15):11425–11434. [PubMed] [Google Scholar]
  38. Zhou W., Xu J., Goldberg E. A 60-bp core promoter sequence of murine lactate dehydrogenase C is sufficient to direct testis-specific transcription in vitro. Biol Reprod. 1994 Sep;51(3):425–432. doi: 10.1095/biolreprod51.3.425. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES