Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jun 15;25(12):2470–2477. doi: 10.1093/nar/25.12.2470

The chick type III collagen gene contains two promoters that are preferentially expressed in different cell types and are separated by over 20 kb of DNA containing 23 exons.

Y Zhang 1, Z Niu 1, A J Cohen 1, H D Nah 1, S L Adams 1
PMCID: PMC146743  PMID: 9171101

Abstract

Type III collagen is present in prechondrogenic mesenchyme, but not in cartilages formed during endochondral ossification. However, cultured chick chondrocytes contain an unusual transcript of the type III collagen gene in which exons 1-23 are replaced with a previously undescribed exon, 23A; this alternative transcript does not encode type III collagen. This observation suggested that, although production of type III collagen mRNA is repressed in chondrocytes, transcription of the type III collagen gene may continue from an alternative promoter. To test this prediction, we isolated and characterized both the upstream and internal promoters of this gene and tested their ability to direct transcription in chondrocytes and skin fibroblasts. The upstream promoter is active in fibroblasts, but inactive in chondrocytes, indicating that repression of type III collagen synthesis during chondrogenesis is transcriptionally mediated. Additionally, sequences in intron 23, preceding exon 23A, function as a highly active promoter in chondrocytes; transcription from this promoter is repressed in fibroblasts. Thus transcriptional control of the type III collagen gene is highly complex, with two promoters separated by at least 20 kb of DNA that are preferentially expressed in different cell types and give rise to RNAs with different structures and functions.

Full Text

The Full Text of this article is available as a PDF (167.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. L., Boettiger D., Focht R. J., Holtzer H., Pacifici M. Regulation of the synthesis of extracellular matrix components in chondroblasts transformed by a temperature-sensitive mutant of Rous sarcoma virus. Cell. 1982 Sep;30(2):373–384. doi: 10.1016/0092-8674(82)90235-5. [DOI] [PubMed] [Google Scholar]
  2. Basu A., Park K., Atchison M. L., Carter R. S., Avadhani N. G. Identification of a transcriptional initiator element in the cytochrome c oxidase subunit Vb promoter which binds to transcription factors NF-E1 (YY-1, delta) and Sp1. J Biol Chem. 1993 Feb 25;268(6):4188–4196. [PubMed] [Google Scholar]
  3. Bennett V. D., Adams S. L. Characterization of the translational control mechanism preventing synthesis of alpha 2(I) collagen in chicken vertebral chondroblasts. J Biol Chem. 1987 Oct 25;262(30):14806–14814. [PubMed] [Google Scholar]
  4. Bennett V. D., Adams S. L. Identification of a cartilage-specific promoter within intron 2 of the chick alpha 2(I) collagen gene. J Biol Chem. 1990 Feb 5;265(4):2223–2230. [PubMed] [Google Scholar]
  5. Benson-Chanda V., Su M. W., Weil D., Chu M. L., Ramirez F. Cloning and analysis of the 5' portion of the human type-III procollagen gene (COL3A1). Gene. 1989 May 30;78(2):255–265. doi: 10.1016/0378-1119(89)90228-x. [DOI] [PubMed] [Google Scholar]
  6. Birk D. E., Mayne R. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol. 1997 Apr;72(4):352–361. [PubMed] [Google Scholar]
  7. Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol. 1990 Apr 20;212(4):563–578. doi: 10.1016/0022-2836(90)90223-9. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Clark J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 1988 Oct 25;16(20):9677–9686. doi: 10.1093/nar/16.20.9677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doege K. J., Garrison K., Coulter S. N., Yamada Y. The structure of the rat aggrecan gene and preliminary characterization of its promoter. J Biol Chem. 1994 Nov 18;269(46):29232–29240. [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Fleischmajer R., Perlish J. S., Burgeson R. E., Shaikh-Bahai F., Timpl R. Type I and type III collagen interactions during fibrillogenesis. Ann N Y Acad Sci. 1990;580:161–175. doi: 10.1111/j.1749-6632.1990.tb17927.x. [DOI] [PubMed] [Google Scholar]
  13. Focht R. J., Adams S. L. Tissue specificity of type I collagen gene expression is determined at both transcriptional and post-transcriptional levels. Mol Cell Biol. 1984 Sep;4(9):1843–1852. doi: 10.1128/mcb.4.9.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilinger G., Alwine J. C. Transcriptional activation by simian virus 40 large T antigen: requirements for simple promoter structures containing either TATA or initiator elements with variable upstream factor binding sites. J Virol. 1993 Nov;67(11):6682–6688. doi: 10.1128/jvi.67.11.6682-6688.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hatamochi A., Paterson B., de Crombrugghe B. Differential binding of a CCAAT DNA binding factor to the promoters of the mouse alpha 2(I) and alpha 1(III) collagen genes. J Biol Chem. 1986 Aug 25;261(24):11310–11314. [PubMed] [Google Scholar]
  17. Hayman A. R., Köppel J., Trueb B. Complete structure of the chicken alpha 2(VI) collagen gene. Eur J Biochem. 1991 Apr 10;197(1):177–184. doi: 10.1111/j.1432-1033.1991.tb15896.x. [DOI] [PubMed] [Google Scholar]
  18. Heilig R., Muraskowsky R., Mandel J. L. The ovalbumin gene family. The 5' end region of the X and Y genes. J Mol Biol. 1982 Mar 25;156(1):1–19. doi: 10.1016/0022-2836(82)90455-7. [DOI] [PubMed] [Google Scholar]
  19. Henkel W., Glanville R. W. Covalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, nonhelical regions of the alpha 1 (I) and alpha 1 (III) chains in the formation of intermolecular crosslinks. Eur J Biochem. 1982 Feb;122(1):205–213. doi: 10.1111/j.1432-1033.1982.tb05868.x. [DOI] [PubMed] [Google Scholar]
  20. Herbomel P., Bourachot B., Yaniv M. Two distinct enhancers with different cell specificities coexist in the regulatory region of polyoma. Cell. 1984 Dec;39(3 Pt 2):653–662. doi: 10.1016/0092-8674(84)90472-0. [DOI] [PubMed] [Google Scholar]
  21. Horton W., Miyashita T., Kohno K., Hassell J. R., Yamada Y. Identification of a phenotype-specific enhancer in the first intron of the rat collagen II gene. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8864–8868. doi: 10.1073/pnas.84.24.8864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Javahery R., Khachi A., Lo K., Zenzie-Gregory B., Smale S. T. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol. 1994 Jan;14(1):116–127. doi: 10.1128/mcb.14.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Keene D. R., Sakai L. Y., Burgeson R. E. Human bone contains type III collagen, type VI collagen, and fibrillin: type III collagen is present on specific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. J Histochem Cytochem. 1991 Jan;39(1):59–69. doi: 10.1177/39.1.1983874. [DOI] [PubMed] [Google Scholar]
  24. Keene D. R., Sakai L. Y., Bächinger H. P., Burgeson R. E. Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J Cell Biol. 1987 Nov;105(5):2393–2402. doi: 10.1083/jcb.105.5.2393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol. 1987 Oct;7(10):3438–3445. doi: 10.1128/mcb.7.10.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krebsbach P. H., Nakata K., Bernier S. M., Hatano O., Miyashita T., Rhodes C. S., Yamada Y. Identification of a minimum enhancer sequence for the type II collagen gene reveals several core sequence motifs in common with the link protein gene. J Biol Chem. 1996 Feb 23;271(8):4298–4303. doi: 10.1074/jbc.271.8.4298. [DOI] [PubMed] [Google Scholar]
  27. Lane J. M., Suda M., von der Mark K., Timpl R. Immunofluorescent localization of structural collagen types in endochondral fracture repair. J Orthop Res. 1986;4(3):318–329. doi: 10.1002/jor.1100040308. [DOI] [PubMed] [Google Scholar]
  28. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  29. Liau G., Mudryj M., de Crombrugghe B. Identification of the promoter and first exon of the mouse alpha 1 (III) collagen gene. J Biol Chem. 1985 Mar 25;260(6):3773–3777. [PubMed] [Google Scholar]
  30. Mudryj M., de Crombrugghe B. Deletion analysis of the mouse alpha 1(III) collagen promoter. Nucleic Acids Res. 1988 Aug 11;16(15):7513–7526. doi: 10.1093/nar/16.15.7513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mukhopadhyay K., Lefebvre V., Zhou G., Garofalo S., Kimura J. H., de Crombrugghe B. Use of a new rat chondrosarcoma cell line to delineate a 119-base pair chondrocyte-specific enhancer element and to define active promoter segments in the mouse pro-alpha 1(II) collagen gene. J Biol Chem. 1995 Nov 17;270(46):27711–27719. doi: 10.1074/jbc.270.46.27711. [DOI] [PubMed] [Google Scholar]
  32. Multimäki P., Aro H., Vuorio E. Differential expression of fibrillar collagen genes during callus formation. Biochem Biophys Res Commun. 1987 Jan 30;142(2):536–541. doi: 10.1016/0006-291x(87)90307-x. [DOI] [PubMed] [Google Scholar]
  33. Nah H. D., Niu Z., Adams S. L. An alternative transcript of the chick type III collagen gene that does not encode type III collagen. J Biol Chem. 1994 Jun 10;269(23):16443–16448. [PubMed] [Google Scholar]
  34. Nah H. D., Upholt W. B. Type II collagen mRNA containing an alternatively spliced exon predominates in the chick limb prior to chondrogenesis. J Biol Chem. 1991 Dec 5;266(34):23446–23452. [PubMed] [Google Scholar]
  35. Pacifici M., Golden E. B., Iwamoto M., Adams S. L. Retinoic acid treatment induces type X collagen gene expression in cultured chick chondrocytes. Exp Cell Res. 1991 Jul;195(1):38–46. doi: 10.1016/0014-4827(91)90497-i. [DOI] [PubMed] [Google Scholar]
  36. Page M., Hogg J., Ashhurst D. E. The effects of mechanical stability on the macromolecules of the connective tissue matrices produced during fracture healing. I. The collagens. Histochem J. 1986 May;18(5):251–265. doi: 10.1007/BF01676235. [DOI] [PubMed] [Google Scholar]
  37. Pallante K. M., Niu Z., Zhao Y., Cohen A. J., Nah H. D., Adams S. L. The chick alpha2(I) collagen gene contains two functional promoters, and its expression in chondrocytes is regulated at both transcriptional and post-transcriptional levels. J Biol Chem. 1996 Oct 11;271(41):25233–25239. doi: 10.1074/jbc.271.41.25233. [DOI] [PubMed] [Google Scholar]
  38. Rhodes C., Yamada Y. Characterization of a glucocorticoid responsive element and identification of an AT-rich element that regulate the link protein gene. Nucleic Acids Res. 1995 Jun 25;23(12):2305–2313. doi: 10.1093/nar/23.12.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ruteshouser E. C., de Crombrugghe B. Characterization of two distinct positive cis-acting elements in the mouse alpha 1 (III) collagen promoter. J Biol Chem. 1989 Aug 15;264(23):13740–13744. [PubMed] [Google Scholar]
  40. Ruteshouser E. C., de Crombrugghe B. Purification of BBF, a DNA-binding protein recognizing a positive cis-acting element in the mouse alpha 1(III) collagen promoter. J Biol Chem. 1992 Jul 15;267(20):14398–14404. [PubMed] [Google Scholar]
  41. Sandberg M., Aro H., Multimäki P., Aho H., Vuorio E. In situ localization of collagen production by chondrocytes and osteoblasts in fracture callus. J Bone Joint Surg Am. 1989 Jan;71(1):69–77. [PubMed] [Google Scholar]
  42. Silver M. H., Foidart J. M., Pratt R. M. Distribution of fibronectin and collagen during mouse limb and palate development. Differentiation. 1981;18(3):141–149. doi: 10.1111/j.1432-0436.1981.tb01115.x. [DOI] [PubMed] [Google Scholar]
  43. Wang L. Q., Balakir R., Horton W. E., Jr Identification of a cis-acting sequence in the collagen II enhancer required for chondrocyte expression and the binding of a chondrocyte nuclear factor. J Biol Chem. 1991 Oct 25;266(30):19878–19881. [PubMed] [Google Scholar]
  44. Yamada Y., Liau G., Mudryj M., Obici S., de Crombrugghe B. Conservation of the sizes for one but not another class of exons in two chick collagen genes. 1984 Jul 26-Aug 1Nature. 310(5975):333–337. doi: 10.1038/310333a0. [DOI] [PubMed] [Google Scholar]
  45. Yamada Y., Mudryj M., Sullivan M., de Crombrugghe B. Isolation and characterization of a genomic clone encoding chick alpha 1 type III collagen. J Biol Chem. 1983 Mar 10;258(5):2758–2761. [PubMed] [Google Scholar]
  46. Yamada Y., Mudryj M., de Crombrugghe B. A uniquely conserved regulatory signal is found around the translation initiation site in three different collagen genes. J Biol Chem. 1983 Dec 25;258(24):14914–14919. [PubMed] [Google Scholar]
  47. von der Mark K., von der Mark H. The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage. J Bone Joint Surg Br. 1977 Nov;59-B(4):458–464. doi: 10.1302/0301-620X.59B4.72756. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES