Abstract
In the present study, a comprehensive, rapid and sensitive method for screening sequence variation of the human mitochondrial tRNA genes has been developed. For this purpose, the denaturing gradient gel electrophoresis (DGGE) technique has been appropriately modified for simultaneous mutation analysis of a large number of samples and adapted so as to circumvent the problems caused by the anomalous electrophoretic behavior of DNA fragments encoding tRNA genes. Eighteen segments of mitochondrial DNA (mtDNA), each containing a single uniform melting domain, were selected to cover all tRNA-encoding regions using the computer program MELT94. All 18 segments were simultaneously analyzed by electrophoresis through a single broad range denaturing gradient gel under rigorously defined conditions, which prevent band broadening and other migration abnormalities from interfering with detection of sequence variants. All base substitutions tested, which include six natural mutations and 14 artificially introduced ones, have been detected successfully in the present study. Several types of evidence strongly suggest that the anomalous behavior in DGGE of tRNA gene-containing mtDNA fragments reflects their tendency to form temporary or stable alternative secondary structures under semi-denaturing conditions. The high sensitivity of the method, which can detect as low as 10% of mutant mtDNA visually, makes it valuable for the analysis of heteroplasmic mutations.
Full Text
The Full Text of this article is available as a PDF (257.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams E. S., Murdaugh S. E., Lerman L. S. Intramolecular DNA melting between stable helical segments: melting theory and metastable states. Nucleic Acids Res. 1995 Jul 25;23(14):2775–2783. doi: 10.1093/nar/23.14.2775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abrams E. S., Stanton V. P., Jr Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids. Methods Enzymol. 1992;212:71–104. doi: 10.1016/0076-6879(92)12006-c. [DOI] [PubMed] [Google Scholar]
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Attardi G., Yoneda M., Chomyn A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim Biophys Acta. 1995 May 24;1271(1):241–248. doi: 10.1016/0925-4439(95)00034-2. [DOI] [PubMed] [Google Scholar]
- Chomyn A., Martinuzzi A., Yoneda M., Daga A., Hurko O., Johns D., Lai S. T., Nonaka I., Angelini C., Attardi G. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4221–4225. doi: 10.1073/pnas.89.10.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomyn A., Meola G., Bresolin N., Lai S. T., Scarlato G., Attardi G. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol Cell Biol. 1991 Apr;11(4):2236–2244. doi: 10.1128/mcb.11.4.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costes B., Girodon E., Ghanem N., Chassignol M., Thuong N. T., Dupret D., Goossens M. Psoralen-modified oligonucleotide primers improve detection of mutations by denaturing gradient gel electrophoresis and provide an alternative to GC-clamping. Hum Mol Genet. 1993 Apr;2(4):393–397. doi: 10.1093/hmg/2.4.393. [DOI] [PubMed] [Google Scholar]
- Enríquez J. A., Attardi G. Evidence for aminoacylation-induced conformational changes in human mitochondrial tRNAs. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8300–8305. doi: 10.1073/pnas.93.16.8300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandez E., Bienvenu T., Desclaux Arramond F., Beldjord K., Kaplan J. C., Beldjord C. Use of chemical clamps in denaturing gradient gel electrophoresis: application in the detection of the most frequent Mediterranean beta-thalassemic mutations. PCR Methods Appl. 1993 Oct;3(2):122–124. doi: 10.1101/gr.3.2.122. [DOI] [PubMed] [Google Scholar]
- Gaines G., Rossi C., Attardi G. The excised leader of human cytochrome c oxidase subunit I mRNA which contains the origin of mitochondrial DNA light-strand synthesis accumulates in mitochondria and is polyadenylated. Mol Cell Biol. 1987 Feb;7(2):925–931. doi: 10.1128/mcb.7.2.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goto Y., Nonaka I., Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990 Dec 13;348(6302):651–653. doi: 10.1038/348651a0. [DOI] [PubMed] [Google Scholar]
- Goto Y., Tojo M., Tohyama J., Horai S., Nonaka I. A novel point mutation in the mitochondrial tRNA(Leu)(UUR) gene in a family with mitochondrial myopathy. Ann Neurol. 1992 Jun;31(6):672–675. doi: 10.1002/ana.410310617. [DOI] [PubMed] [Google Scholar]
- Gray M., Charpentier A., Walsh K., Wu P., Bender W. Mapping point mutations in the Drosophila rosy locus using denaturing gradient gel blots. Genetics. 1991 Jan;127(1):139–149. doi: 10.1093/genetics/127.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guldberg P., Güttler F. 'Broad-range' DGGE for single-step mutation scanning of entire genes: application to human phenylalanine hydroxylase gene. Nucleic Acids Res. 1994 Mar 11;22(5):880–881. doi: 10.1093/nar/22.5.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattori Y., Goto Y., Sakuta R., Nonaka I., Mizuno Y., Horai S. Point mutations in mitochondrial tRNA genes: sequence analysis of chronic progressive external ophthalmoplegia (CPEO) J Neurol Sci. 1994 Aug;125(1):50–55. doi: 10.1016/0022-510x(94)90241-0. [DOI] [PubMed] [Google Scholar]
- Hayashi J., Ohta S., Kagawa Y., Takai D., Miyabayashi S., Tada K., Fukushima H., Inui K., Okada S., Goto Y. Functional and morphological abnormalities of mitochondria in human cells containing mitochondrial DNA with pathogenic point mutations in tRNA genes. J Biol Chem. 1994 Jul 22;269(29):19060–19066. [PubMed] [Google Scholar]
- Houshmand M., Larsson N. G., Holme E., Oldfors A., Tulinius M. H., Andersen O. Automatic sequencing of mitochondrial tRNA genes in patients with mitochondrial encephalomyopathy. Biochim Biophys Acta. 1994 Apr 12;1226(1):49–55. doi: 10.1016/0925-4439(94)90058-2. [DOI] [PubMed] [Google Scholar]
- Ionasescu V. V., Hart M., DiMauro S., Moraes C. T. Clinical and morphologic features of a myopathy associated with a point mutation in the mitochondrial tRNA(Pro) gene. Neurology. 1994 May;44(5):975–977. doi: 10.1212/wnl.44.5.975. [DOI] [PubMed] [Google Scholar]
- Ito T., Hattori K., Obayashi T., Tanaka M., Sugiyama S., Ozawa T. Mitochondrial DNA mutations in cardiomyopathy. Jpn Circ J. 1992 Oct;56(10):1045–1053. doi: 10.1253/jcj.56.1045. [DOI] [PubMed] [Google Scholar]
- Ito W., Ishiguro H., Kurosawa Y. A general method for introducing a series of mutations into cloned DNA using the polymerase chain reaction. Gene. 1991 Jun 15;102(1):67–70. doi: 10.1016/0378-1119(91)90539-n. [DOI] [PubMed] [Google Scholar]
- Kadenbach B., Münscher C., Frank V., Müller-Höcker J., Napiwotzki J. Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res. 1995 Oct;338(1-6):161–172. doi: 10.1016/0921-8734(95)00021-w. [DOI] [PubMed] [Google Scholar]
- Laderman K. A., Penny J. R., Mazzucchelli F., Bresolin N., Scarlato G., Attardi G. Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells. J Biol Chem. 1996 Jul 5;271(27):15891–15897. doi: 10.1074/jbc.271.27.15891. [DOI] [PubMed] [Google Scholar]
- Lerman L. S., Fischer S. G., Hurley I., Silverstein K., Lumelsky N. Sequence-determined DNA separations. Annu Rev Biophys Bioeng. 1984;13:399–423. doi: 10.1146/annurev.bb.13.060184.002151. [DOI] [PubMed] [Google Scholar]
- Lerman L. S., Silverstein K. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 1987;155:482–501. doi: 10.1016/0076-6879(87)55032-7. [DOI] [PubMed] [Google Scholar]
- Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8731–8738. doi: 10.1073/pnas.91.19.8731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mariotti C., Tiranti V., Carrara F., Dallapiccola B., DiDonato S., Zeviani M. Defective respiratory capacity and mitochondrial protein synthesis in transformant cybrids harboring the tRNA(Leu(UUR)) mutation associated with maternally inherited myopathy and cardiomyopathy. J Clin Invest. 1994 Mar;93(3):1102–1107. doi: 10.1172/JCI117061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCampbell C. R., Wartell R. M., Plaskon R. R. Inverted repeat sequences can influence the melting transitions of linear DNAs. Biopolymers. 1989 Oct;28(10):1745–1758. doi: 10.1002/bip.360281008. [DOI] [PubMed] [Google Scholar]
- Moraes C. T., Ciacci F., Bonilla E., Jansen C., Hirano M., Rao N., Lovelace R. E., Rowland L. P., Schon E. A., DiMauro S. Two novel pathogenic mitochondrial DNA mutations affecting organelle number and protein synthesis. Is the tRNA(Leu(UUR)) gene an etiologic hot spot? J Clin Invest. 1993 Dec;92(6):2906–2915. doi: 10.1172/JCI116913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers R. M., Fischer S. G., Maniatis T., Lerman L. S. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res. 1985 May 10;13(9):3111–3129. doi: 10.1093/nar/13.9.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers R. M., Maniatis T., Lerman L. S. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 1987;155:501–527. doi: 10.1016/0076-6879(87)55033-9. [DOI] [PubMed] [Google Scholar]
- Prezant R. T., Shohat M., Jaber L., Pressman S., Fischel-Ghodsian N. Biochemical characterization of a pedigree with mitochondrially inherited deafness. Am J Med Genet. 1992 Nov 1;44(4):465–472. doi: 10.1002/ajmg.1320440416. [DOI] [PubMed] [Google Scholar]
- Shoffner J. M., Lott M. T., Lezza A. M., Seibel P., Ballinger S. W., Wallace D. C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990 Jun 15;61(6):931–937. doi: 10.1016/0092-8674(90)90059-n. [DOI] [PubMed] [Google Scholar]
- Wallace D. C. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–1212. doi: 10.1146/annurev.bi.61.070192.005523. [DOI] [PubMed] [Google Scholar]
- Wallace D. C. Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8739–8746. doi: 10.1073/pnas.91.19.8739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber C. K., Shaffer D. J., Sidman C. L. Unexpected behavior of H2Kb mutant DNAs in denaturing gradient gel electrophoresis. Nucleic Acids Res. 1991 Jun 25;19(12):3331–3335. doi: 10.1093/nar/19.12.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong T. W., Clayton D. A. In vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis. Cell. 1985 Oct;42(3):951–958. doi: 10.1016/0092-8674(85)90291-0. [DOI] [PubMed] [Google Scholar]
- Yoon K. L., Aprille J. R., Ernst S. G. Mitochondrial tRNA(thr) mutation in fatal infantile respiratory enzyme deficiency. Biochem Biophys Res Commun. 1991 May 15;176(3):1112–1115. doi: 10.1016/0006-291x(91)90399-r. [DOI] [PubMed] [Google Scholar]