Abstract
Neurons cannot negotiate an elongation across the peripheral (PNS)–central nervous system (CNS) transitional zone and grow into or out of the spinal cord in the mature mammal. The astrocytic rich CNS part of the spinal nerve root is most effective in preventing regeneration even of nerve fibres from transplanted embryonic ganglion cells. Regeneration of severed nerve fibres into the spinal cord occurs when the transition zone is absent as in the immature animal. Before the establishment of a transition zone there is also new growth of neuronal processes from dorsal horn neurons distally to the injured dorsal root. Thus the experimental strategy to reestablish spinal cord to peripheral nerve connectivity has been to delete the transitional region and implant severed ventral or dorsal roots into the spinal cord. Dorsal root implantation resulted in reestablished afferent connectivity by new neuronal processes from secondary sensory neurons in the dorsal horn of the spinal cord extending into the PNS. The ability for plasticity in these cells allowed for a concurrent retention of their original rostral projection. Ventral root implantation into the spinal cord corrected deficit motor function. In a long series of experiments performed in different species, the functional restitution was demonstrated to depend on an initial regrowth of motor neuron axons through spinal cord tissue (CNS). These findings have led to the design of a new surgical strategy in cases of traumatic spinal nerve root injuries.
Keywords: Spinal cord, astrocytes
Full Text
The Full Text of this article is available as a PDF (112.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertelli J. A., Mira J. C. Brachial plexus repair by peripheral nerve grafts directly into the spinal cord in rats. Behavioral and anatomical evidence of functional recovery. J Neurosurg. 1994 Jul;81(1):107–114. doi: 10.3171/jns.1994.81.1.0107. [DOI] [PubMed] [Google Scholar]
- Bovolenta P., Wandosell F., Nieto-Sampedro M. CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth. Prog Brain Res. 1992;94:367–379. doi: 10.1016/s0079-6123(08)61765-3. [DOI] [PubMed] [Google Scholar]
- Carlstedt T. P., Hallin R. G., Hedström K. G., Nilsson-Remahl I. A. Functional recovery in primates with brachial plexus injury after spinal cord implantation of avulsed ventral roots. J Neurol Neurosurg Psychiatry. 1993 Jun;56(6):649–654. doi: 10.1136/jnnp.56.6.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlstedt T., Cullheim S., Risling M., Ulfhake B. Nerve fibre regeneration across the PNS-CNS interface at the root-spinal cord junction. Brain Res Bull. 1989 Jan;22(1):93–102. doi: 10.1016/0361-9230(89)90133-0. [DOI] [PubMed] [Google Scholar]
- Carlstedt T., Dalsgaard C. J., Molander C. Regrowth of lesioned dorsal root nerve fibers into the spinal cord of neonatal rats. Neurosci Lett. 1987 Feb 10;74(1):14–18. doi: 10.1016/0304-3940(87)90043-7. [DOI] [PubMed] [Google Scholar]
- Carlstedt T., Grane P., Hallin R. G., Norén G. Return of function after spinal cord implantation of avulsed spinal nerve roots. Lancet. 1995 Nov 18;346(8986):1323–1325. doi: 10.1016/s0140-6736(95)92342-x. [DOI] [PubMed] [Google Scholar]
- Carlstedt T., Lindå H., Cullheim S., Risling M. Reinnervation of hind limb muscles after ventral root avulsion and implantation in the lumbar spinal cord of the adult rat. Acta Physiol Scand. 1986 Dec;128(4):645–646. doi: 10.1111/j.1748-1716.1986.tb08024.x. [DOI] [PubMed] [Google Scholar]
- Carlstedt T. Regenerating axons form nerve terminals at astrocytes. Brain Res. 1985 Nov 11;347(1):188–191. doi: 10.1016/0006-8993(85)90911-4. [DOI] [PubMed] [Google Scholar]
- Carlstedt T. Reinnervation of the mammalian spinal cord after neonatal dorsal root crush. J Neurocytol. 1988 Jun;17(3):335–350. doi: 10.1007/BF01187856. [DOI] [PubMed] [Google Scholar]
- Chong M. S., Reynolds M. L., Irwin N., Coggeshall R. E., Emson P. C., Benowitz L. I., Woolf C. J. GAP-43 expression in primary sensory neurons following central axotomy. J Neurosci. 1994 Jul;14(7):4375–4384. doi: 10.1523/JNEUROSCI.14-07-04375.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cullheim S., Carlstedt T., Lindå H., Risling M., Ulfhake B. Motoneurons reinnervate skeletal muscle after ventral root implantation into the spinal cord of the cat. Neuroscience. 1989;29(3):725–733. doi: 10.1016/0306-4522(89)90144-9. [DOI] [PubMed] [Google Scholar]
- David S., Aguayo A. J. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981 Nov 20;214(4523):931–933. doi: 10.1126/science.6171034. [DOI] [PubMed] [Google Scholar]
- Fernandez E., Pallini R., Mercanti D. Effects of topically administered nerve growth factor on axonal regeneration in peripheral nerve autografts implanted in the spinal cord of rats. Neurosurgery. 1990 Jan;26(1):37–42. doi: 10.1097/00006123-199001000-00005. [DOI] [PubMed] [Google Scholar]
- Hoffmann C. F., Thomeer R. T., Marani E. Ventral root avulsions of the cat spinal cord at the brachial plexus level (cervical 7). Eur J Morphol. 1990;28(2-4):418–429. [PubMed] [Google Scholar]
- Horvat J. C., Pécot-Dechavassine M., Mira J. C. Réinnervation fonctionnelle d'un muscle squelettique du Rat adulte au moyen d'un greffon de nerf périphérique introduit dans la moëlle épinière par voie dorsale. C R Acad Sci III. 1987;304(6):143–148. [PubMed] [Google Scholar]
- Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci. 1993 Jul;13(7):2739–2748. doi: 10.1523/JNEUROSCI.13-07-02739.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozlova E. N., Rosario C. M., Strömberg I., Bygdeman M., Aldskogius H. Peripherally grafted human foetal dorsal root ganglion cells extend axons into the spinal cord of adult host rats by circumventing dorsal root entry zone astrocytes. Neuroreport. 1995 Jan 26;6(2):269–272. doi: 10.1097/00001756-199501000-00011. [DOI] [PubMed] [Google Scholar]
- LIU C. N., CHAMBERS W. W. Intraspinal sprouting of dorsal root axons; development of new collaterals and preterminals following partial denervation of the spinal cord in the cat. AMA Arch Neurol Psychiatry. 1958 Jan;79(1):46–61. [PubMed] [Google Scholar]
- Lindå H., Risling M., Cullheim S. 'Dendraxons' in regenerating motoneurons in the cat: do dendrites generate new axons after central axotomy? Brain Res. 1985 Dec 9;358(1-2):329–333. doi: 10.1016/0006-8993(85)90978-3. [DOI] [PubMed] [Google Scholar]
- Livesey F. J., Fraher J. P. Experimental traction injuries of cervical spinal nerve roots: a scanning EM study of rupture patterns in fresh tissue. Neuropathol Appl Neurobiol. 1992 Aug;18(4):376–386. doi: 10.1111/j.1365-2990.1992.tb00799.x. [DOI] [PubMed] [Google Scholar]
- Murray M., Goldberger M. E. Replacement of synaptic terminals in lamina II and Clarke's nucleus after unilateral lumbosacral dorsal rhizotomy in adult cats. J Neurosci. 1986 Nov;6(11):3205–3217. doi: 10.1523/JNEUROSCI.06-11-03205.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Risling M., Cullheim S., Hildebrand C. Reinnervation of the ventral root L7 from ventral horn neurons following intramedullary axotomy in adult cats. Brain Res. 1983 Nov 28;280(1):15–23. doi: 10.1016/0006-8993(83)91169-1. [DOI] [PubMed] [Google Scholar]
- Risling M., Dalsgaard C. J., Terenius L. Neuropeptide Y-like immunoreactivity in the lumbosacral pia mater in normal cats and after sciatic neuroma formation. Brain Res. 1985 Dec 9;358(1-2):372–375. doi: 10.1016/0006-8993(85)90987-4. [DOI] [PubMed] [Google Scholar]
- Risling M., Fried K., Linda H., Carlstedt T., Cullheim S. Regrowth of motor axons following spinal cord lesions: distribution of laminin and collagen in the CNS scar tissue. Brain Res Bull. 1993;30(3-4):405–414. doi: 10.1016/0361-9230(93)90272-d. [DOI] [PubMed] [Google Scholar]
- Rosario C. M., Aldskogius H., Carlstedt T., Sidman R. L. Differentiation and axonal outgrowth pattern of fetal dorsal root ganglion cells orthotopically allografted into adult rats. Exp Neurol. 1993 Mar;120(1):16–31. doi: 10.1006/exnr.1993.1037. [DOI] [PubMed] [Google Scholar]
- Schnell L., Schwab M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990 Jan 18;343(6255):269–272. doi: 10.1038/343269a0. [DOI] [PubMed] [Google Scholar]
- Sims T. J., Gilmore S. A. Regrowth of dorsal root axons into a radiation-induced glial-deficient environment in the spinal cord. Brain Res. 1994 Jan 14;634(1):113–126. doi: 10.1016/0006-8993(94)90264-x. [DOI] [PubMed] [Google Scholar]
- Smith K. J., Kodama R. T. Reinnervation of denervated skeletal muscle by central neurons regenerating via ventral roots implanted into the spinal cord. Brain Res. 1991 Jun 14;551(1-2):221–229. doi: 10.1016/0006-8993(91)90936-p. [DOI] [PubMed] [Google Scholar]
- Wictorin K., Björklund A. Axon outgrowth from grafts of human embryonic spinal cord in the lesioned adult rat spinal cord. Neuroreport. 1992 Dec;3(12):1045–1048. doi: 10.1097/00001756-199212000-00003. [DOI] [PubMed] [Google Scholar]
- Wu W. Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown by NADPH diaphorase histochemistry. Exp Neurol. 1993 Apr;120(2):153–159. doi: 10.1006/exnr.1993.1050. [DOI] [PubMed] [Google Scholar]