Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1997 Jan;190(Pt 1):57–71. doi: 10.1046/j.1469-7580.1997.19010057.x

Axonal regeneration through acellular muscle grafts

SUSAN HALL 1,
PMCID: PMC1467584  PMID: 9034882

Abstract

The management of peripheral nerve injury remains a major clinical problem. Progress in this field will almost certainly depend upon manipulating the pathophysiological processes which are triggered by traumatic injuries. One of the most important determinants of functional outcome after the reconstruction of a transected peripheral nerve is the length of the gap between proximal and distal nerve stumps. Long defects (> 2 cm) must be bridged by a suitable conduit in order to support axonal regrowth. This review examines the cellular and acellular elements which facilitate axonal regrowth and the use of acellular muscle grafts in the repair of injuries in the peripheral nervous system.

Keywords: Nerve injury, basal lamina, Schwann cells

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abernethy D. A., Thomas P. K., Rud A., King R. H. Mutual attraction between emigrant cells from transected denervated nerve. J Anat. 1994 Apr;184(Pt 2):239–249. [PMC free article] [PubMed] [Google Scholar]
  2. Anderson P. N., Nadim W., Turmaine M. Schwann cell migration through freeze-killed peripheral nerve grafts without accompanying axons. Acta Neuropathol. 1991;82(3):193–199. doi: 10.1007/BF00294445. [DOI] [PubMed] [Google Scholar]
  3. Anton E. S., Weskamp G., Reichardt L. F., Matthew W. D. Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2795–2799. doi: 10.1073/pnas.91.7.2795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berry M., Hall S., Follows R., Wyse J. P. Defective myelination in the optic nerve of the Browman-Wyse (BW) mutant rat. J Neurocytol. 1989 Apr;18(2):141–159. doi: 10.1007/BF01206658. [DOI] [PubMed] [Google Scholar]
  5. Berry M., Hall S., Rees L., Carlile J., Wyse J. P. Regeneration of axons in the optic nerve of the adult Browman-Wyse (BW) mutant rat. J Neurocytol. 1992 Jun;21(6):426–448. doi: 10.1007/BF01191507. [DOI] [PubMed] [Google Scholar]
  6. Birch R., Raji A. R. Repair of median and ulnar nerves. Primary suture is best. J Bone Joint Surg Br. 1991 Jan;73(1):154–157. doi: 10.1302/0301-620X.73B1.1991753. [DOI] [PubMed] [Google Scholar]
  7. Bolin L. M., Shooter E. M. Neurons regulate Schwann cell genes by diffusible molecules. J Cell Biol. 1993 Oct;123(1):237–243. doi: 10.1083/jcb.123.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bosman F. T., Cleutjens J., Beek C., Havenith M. Basement membrane heterogeneity. Histochem J. 1989 Nov;21(11):629–633. doi: 10.1007/BF01002481. [DOI] [PubMed] [Google Scholar]
  9. Bryan D. J., Miller R. A., Costas P. D., Wang K. K., Seckel B. R. Immunocytochemistry of skeletal muscle basal lamina grafts in nerve regeneration. Plast Reconstr Surg. 1993 Oct;92(5):927–940. [PubMed] [Google Scholar]
  10. Bunge M. B. Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord. J Neurol. 1994 Dec;242(1 Suppl 1):S36–S39. doi: 10.1007/BF00939240. [DOI] [PubMed] [Google Scholar]
  11. Calder J. S., Green C. J. Nerve-muscle sandwich grafts: the importance of Schwann cells in peripheral nerve regeneration through muscle basal lamina conduits. J Hand Surg Br. 1995 Aug;20(4):423–428. doi: 10.1016/s0266-7681(05)80147-0. [DOI] [PubMed] [Google Scholar]
  12. Calder J. S., Norris R. W. Repair of mixed peripheral nerves using muscle autografts: a preliminary communication. Br J Plast Surg. 1993 Oct;46(7):557–564. doi: 10.1016/0007-1226(93)90105-k. [DOI] [PubMed] [Google Scholar]
  13. Clark M. B., Zeheb R., White T. K., Bunge R. P. Schwann cell plasminogen activator is regulated by neurons. Glia. 1991;4(5):514–528. doi: 10.1002/glia.440040511. [DOI] [PubMed] [Google Scholar]
  14. Cohen J. A., Yachnis A. T., Arai M., Davis J. G., Scherer S. S. Expression of the neu proto-oncogene by Schwann cells during peripheral nerve development and Wallerian degeneration. J Neurosci Res. 1992 Apr;31(4):622–634. doi: 10.1002/jnr.490310406. [DOI] [PubMed] [Google Scholar]
  15. Curtis R., Stewart H. J., Hall S. M., Wilkin G. P., Mirsky R., Jessen K. R. GAP-43 is expressed by nonmyelin-forming Schwann cells of the peripheral nervous system. J Cell Biol. 1992 Mar;116(6):1455–1464. doi: 10.1083/jcb.116.6.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Doubleday B., Robinson P. P. The effect of NGF depletion on the neurotropic influence exerted by the distal stump following nerve transection. J Anat. 1995 Jun;186(Pt 3):593–605. [PMC free article] [PubMed] [Google Scholar]
  17. Doyu M., Sobue G., Ken E., Kimata K., Shinomura T., Yamada Y., Mitsuma T., Takahashi A. Laminin A, B1, and B2 chain gene expression in transected and regenerating nerves: regulation by axonal signals. J Neurochem. 1993 Feb;60(2):543–551. doi: 10.1111/j.1471-4159.1993.tb03183.x. [DOI] [PubMed] [Google Scholar]
  18. Eldridge C. F., Sanes J. R., Chiu A. Y., Bunge R. P., Cornbrooks C. J. Basal lamina-associated heparan sulphate proteoglycan in the rat PNS: characterization and localization using monoclonal antibodies. J Neurocytol. 1986 Feb;15(1):37–51. doi: 10.1007/BF02057903. [DOI] [PubMed] [Google Scholar]
  19. Enver M. K., Hall S. M. Are Schwann cells essential for axonal regeneration into muscle autografts? Neuropathol Appl Neurobiol. 1994 Dec;20(6):587–598. doi: 10.1111/j.1365-2990.1994.tb01013.x. [DOI] [PubMed] [Google Scholar]
  20. Fawcett J. W., Keynes R. J. Muscle basal lamina: a new graft material for peripheral nerve repair. J Neurosurg. 1986 Sep;65(3):354–363. doi: 10.3171/jns.1986.65.3.0354. [DOI] [PubMed] [Google Scholar]
  21. Feltri M. L., Scherer S. S., Nemni R., Kamholz J., Vogelbacker H., Scott M. O., Canal N., Quaranta V., Wrabetz L. Beta 4 integrin expression in myelinating Schwann cells is polarized, developmentally regulated and axonally dependent. Development. 1994 May;120(5):1287–1301. doi: 10.1242/dev.120.5.1287. [DOI] [PubMed] [Google Scholar]
  22. Feneley M. R., Fawcett J. W., Keynes R. J. The role of Schwann cells in the regeneration of peripheral nerve axons through muscle basal lamina grafts. Exp Neurol. 1991 Dec;114(3):275–285. doi: 10.1016/0014-4886(91)90153-4. [DOI] [PubMed] [Google Scholar]
  23. Fu S. Y., Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy. J Neurosci. 1995 May;15(5 Pt 2):3876–3885. doi: 10.1523/JNEUROSCI.15-05-03876.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fu S. Y., Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995 May;15(5 Pt 2):3886–3895. doi: 10.1523/JNEUROSCI.15-05-03886.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Giftochristos N., David S. Laminin and heparan sulphate proteoglycan in the lesioned adult mammalian central nervous system and their possible relationship to axonal sprouting. J Neurocytol. 1988 Jun;17(3):385–397. doi: 10.1007/BF01187860. [DOI] [PubMed] [Google Scholar]
  26. Glasby M. A., Gschmeissner S. G., Hitchcock R. J., Huang C. L. The dependence of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane. J Neurocytol. 1986 Aug;15(4):497–510. doi: 10.1007/BF01611732. [DOI] [PubMed] [Google Scholar]
  27. Glasby M. A. Interposed muscle grafts in nerve repair in the hand: an experimental basis for future clinical use. World J Surg. 1991 Jul-Aug;15(4):501–510. doi: 10.1007/BF01675647. [DOI] [PubMed] [Google Scholar]
  28. Goodman S. L., Aumailley M., von der Mark H. Multiple cell surface receptors for the short arms of laminin: alpha 1 beta 1 integrin and RGD-dependent proteins mediate cell attachment only to domains III in murine tumor laminin. J Cell Biol. 1991 May;113(4):931–941. doi: 10.1083/jcb.113.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gupta S. K., Pringle J., Poduslo J. F., Mezei C. Induction of myelin genes during peripheral nerve remyelination requires a continuous signal from the ingrowing axon. J Neurosci Res. 1993 Jan;34(1):14–23. doi: 10.1002/jnr.490340103. [DOI] [PubMed] [Google Scholar]
  30. Hall S. M., Enver K. Axonal regeneration through heat pretreated muscle autografts. An immunohistochemical and electron microscopic study. J Hand Surg Br. 1994 Aug;19(4):444–451. doi: 10.1016/0266-7681(94)90208-9. [DOI] [PubMed] [Google Scholar]
  31. Hall S. M. Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol Appl Neurobiol. 1986 Jan-Feb;12(1):27–46. doi: 10.1111/j.1365-2990.1986.tb00679.x. [DOI] [PubMed] [Google Scholar]
  32. Hall S. M. Regeneration in the peripheral nervous system. Neuropathol Appl Neurobiol. 1989 Nov-Dec;15(6):513–529. doi: 10.1111/j.1365-2990.1989.tb01251.x. [DOI] [PubMed] [Google Scholar]
  33. Hems T. E., Glasby M. A. The limit of graft length in the experimental use of muscle grafts for nerve repair. J Hand Surg Br. 1993 Apr;18(2):165–170. doi: 10.1016/0266-7681(93)90097-y. [DOI] [PubMed] [Google Scholar]
  34. Heumann R., Korsching S., Bandtlow C., Thoenen H. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol. 1987 Jun;104(6):1623–1631. doi: 10.1083/jcb.104.6.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Heumann R., Lindholm D., Bandtlow C., Meyer M., Radeke M. J., Misko T. P., Shooter E., Thoenen H. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8735–8739. doi: 10.1073/pnas.84.23.8735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Horwitz A. F. More than just scaffolding... Curr Biol. 1991 Feb;1(1):6–7. doi: 10.1016/0960-9822(91)90109-a. [DOI] [PubMed] [Google Scholar]
  37. Humphries M. J., Akiyama S. K., Komoriya A., Olden K., Yamada K. M. Neurite extension of chicken peripheral nervous system neurons on fibronectin: relative importance of specific adhesion sites in the central cell-binding domain and the alternatively spliced type III connecting segment. J Cell Biol. 1988 Apr;106(4):1289–1297. doi: 10.1083/jcb.106.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Jessen K. R., Brennan A., Morgan L., Mirsky R., Kent A., Hashimoto Y., Gavrilovic J. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron. 1994 Mar;12(3):509–527. doi: 10.1016/0896-6273(94)90209-7. [DOI] [PubMed] [Google Scholar]
  39. Kauppila T., Jyväsjärvi E., Huopaniemi T., Hujanen E., Liesi P. A laminin graft replaces neurorrhaphy in the restorative surgery of the rat sciatic nerve. Exp Neurol. 1993 Oct;123(2):181–191. doi: 10.1006/exnr.1993.1151. [DOI] [PubMed] [Google Scholar]
  40. Keynes R. J., Hopkins W. G., Huang L. H. Regeneration of mouse peripheral nerves in degenerating skeletal muscle: guidance by residual muscle fibre basement membrane. Brain Res. 1984 Mar 19;295(2):275–281. doi: 10.1016/0006-8993(84)90976-4. [DOI] [PubMed] [Google Scholar]
  41. Kioussi C., Mamalaki A., Jessen K., Mirsky R., Hersh L. B., Matsas R. Expression of endopeptidase-24.11 (common acute lymphoblastic leukaemia antigen CD10) in the sciatic nerve of the adult rat after lesion and during regeneration. Eur J Neurosci. 1995 May 1;7(5):951–961. doi: 10.1111/j.1460-9568.1995.tb01083.x. [DOI] [PubMed] [Google Scholar]
  42. Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci. 1993 Jul;13(7):2739–2748. doi: 10.1523/JNEUROSCI.13-07-02739.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kromer L. F., Cornbrooks C. J. Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6330–6334. doi: 10.1073/pnas.82.18.6330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kuecherer-Ehret A., Graeber M. B., Edgar D., Thoenen H., Kreutzberg G. W. Immunoelectron microscopic localization of laminin in normal and regenerating mouse sciatic nerve. J Neurocytol. 1990 Feb;19(1):101–109. doi: 10.1007/BF01188442. [DOI] [PubMed] [Google Scholar]
  45. Lefcort F., Venstrom K., McDonald J. A., Reichardt L. F. Regulation of expression of fibronectin and its receptor, alpha 5 beta 1, during development and regeneration of peripheral nerve. Development. 1992 Nov;116(3):767–782. doi: 10.1242/dev.116.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Levi A. D., Guénard V., Aebischer P., Bunge R. P. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci. 1994 Mar;14(3 Pt 1):1309–1319. doi: 10.1523/JNEUROSCI.14-03-01309.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Li Y., Raisman G. Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci. 1994 Jul;14(7):4050–4063. doi: 10.1523/JNEUROSCI.14-07-04050.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Madison R. D., Archibald S. J. Point sources of Schwann cells result in growth into a nerve entubulation repair site in the absence of axons: effects of freeze-thawing. Exp Neurol. 1994 Aug;128(2):266–275. doi: 10.1006/exnr.1994.1136. [DOI] [PubMed] [Google Scholar]
  49. Martini R. Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J Neurocytol. 1994 Jan;23(1):1–28. doi: 10.1007/BF01189813. [DOI] [PubMed] [Google Scholar]
  50. Martini R., Schachner M., Brushart T. M. The L2/HNK-1 carbohydrate is preferentially expressed by previously motor axon-associated Schwann cells in reinnervated peripheral nerves. J Neurosci. 1994 Nov;14(11 Pt 2):7180–7191. doi: 10.1523/JNEUROSCI.14-11-07180.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Martini R., Schachner M., Faissner A. Enhanced expression of the extracellular matrix molecule J1/tenascin in the regenerating adult mouse sciatic nerve. J Neurocytol. 1990 Aug;19(4):601–616. doi: 10.1007/BF01257247. [DOI] [PubMed] [Google Scholar]
  52. Martini R., Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. J Cell Biol. 1988 May;106(5):1735–1746. doi: 10.1083/jcb.106.5.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Mathews G. A., Ffrench-Constant C. Embryonic fibronectins are up-regulated following peripheral nerve injury in rats. J Neurobiol. 1995 Feb;26(2):171–188. doi: 10.1002/neu.480260203. [DOI] [PubMed] [Google Scholar]
  54. Matsuoka I., Meyer M., Thoenen H. Cell-type-specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: comparison of Schwann cells with other cell types. J Neurosci. 1991 Oct;11(10):3165–3177. doi: 10.1523/JNEUROSCI.11-10-03165.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. McAllister R. M., Calder J. S. Paradoxical clinical consequences of peripheral nerve injury: a review of anatomical, neurophysiological and psychological mechanisms. Br J Plast Surg. 1995 Sep;48(6):384–395. doi: 10.1016/s0007-1226(95)90107-8. [DOI] [PubMed] [Google Scholar]
  56. Meyer M., Matsuoka I., Wetmore C., Olson L., Thoenen H. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol. 1992 Oct;119(1):45–54. doi: 10.1083/jcb.119.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Mitchell L. S., Griffiths I. R., Morrison S., Barrie J. A., Kirkham D., McPhilemy K. Expression of myelin protein gene transcripts by Schwann cells of regenerating nerve. J Neurosci Res. 1990 Oct;27(2):125–135. doi: 10.1002/jnr.490270202. [DOI] [PubMed] [Google Scholar]
  58. Montero-Menei C. N., Pouplard-Barthelaix A., Gumpel M., Baron-Van Evercooren A. Pure Schwann cell suspension grafts promote regeneration of the lesioned septo-hippocampal cholinergic pathway. Brain Res. 1992 Jan 20;570(1-2):198–208. doi: 10.1016/0006-8993(92)90582-t. [DOI] [PubMed] [Google Scholar]
  59. Neuberger T. J., Cornbrooks C. J., Kromer L. F. Effects of delayed transplantation of cultured Schwann cells on axonal regeneration from central nervous system cholinergic neurons. J Comp Neurol. 1992 Jan 1;315(1):16–33. doi: 10.1002/cne.903150103. [DOI] [PubMed] [Google Scholar]
  60. Norris R. W., Glasby M. A., Gattuso J. M., Bowden R. E. Peripheral nerve repair in humans using muscle autografts. A new technique. J Bone Joint Surg Br. 1988 Aug;70(4):530–533. doi: 10.1302/0301-620X.70B4.3403592. [DOI] [PubMed] [Google Scholar]
  61. Obremski V. J., Johnson M. I., Bunge M. B. Fibroblasts are required for Schwann cell basal lamina deposition and ensheathment of unmyelinated sympathetic neurites in culture. J Neurocytol. 1993 Feb;22(2):102–117. doi: 10.1007/BF01181574. [DOI] [PubMed] [Google Scholar]
  62. Obremski V. J., Wood P. M., Bunge M. B. Fibroblasts promote Schwann cell basal lamina deposition and elongation in the absence of neurons in culture. Dev Biol. 1993 Nov;160(1):119–134. doi: 10.1006/dbio.1993.1291. [DOI] [PubMed] [Google Scholar]
  63. Paíno C. L., Fernandez-Valle C., Bates M. L., Bunge M. B. Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells. J Neurocytol. 1994 Jul;23(7):433–452. doi: 10.1007/BF01207115. [DOI] [PubMed] [Google Scholar]
  64. Pellegrino R. G., Spencer P. S. Schwann cell mitosis in response to regenerating peripheral axons in vivo. Brain Res. 1985 Aug 19;341(1):16–25. doi: 10.1016/0006-8993(85)91467-2. [DOI] [PubMed] [Google Scholar]
  65. Perris R., Paulsson M., Bronner-Fraser M. Molecular mechanisms of avian neural crest cell migration on fibronectin and laminin. Dev Biol. 1989 Nov;136(1):222–238. doi: 10.1016/0012-1606(89)90144-9. [DOI] [PubMed] [Google Scholar]
  66. Plant G. W., Harvey A. R., Chirila T. V. Axonal growth within poly (2-hydroxyethyl methacrylate) sponges infiltrated with Schwann cells and implanted into the lesioned rat optic tract. Brain Res. 1995 Feb 6;671(1):119–130. doi: 10.1016/0006-8993(94)01312-6. [DOI] [PubMed] [Google Scholar]
  67. Politis M. J., Ederle K., Spencer P. S. Tropism in nerve regeneration in vivo. Attraction of regenerating axons by diffusible factors derived from cells in distal nerve stumps of transected peripheral nerves. Brain Res. 1982 Dec 16;253(1-2):1–12. doi: 10.1016/0006-8993(82)90667-9. [DOI] [PubMed] [Google Scholar]
  68. Raivich G., Kreutzberg G. W. Pathophysiology of glial growth factor receptors. Glia. 1994 Jun;11(2):129–146. doi: 10.1002/glia.440110208. [DOI] [PubMed] [Google Scholar]
  69. Richardson P. M., McGuinness U. M., Aguayo A. J. Axons from CNS neurons regenerate into PNS grafts. Nature. 1980 Mar 20;284(5753):264–265. doi: 10.1038/284264a0. [DOI] [PubMed] [Google Scholar]
  70. Rogers S. L., Palm S. L., Letourneau P. C., Hanlon K., McCarthy J. B., Furcht L. T. Cell adhesion and neurite extension in response to two proteolytic fragments of laminin. J Neurosci Res. 1988 Oct-Dec;21(2-4):315–322. doi: 10.1002/jnr.490210224. [DOI] [PubMed] [Google Scholar]
  71. SEDDON H. J. NERVE GRAFTING. J Bone Joint Surg Br. 1963 Aug;45:447–461. [PubMed] [Google Scholar]
  72. Sandrock A. W., Jr, Matthew W. D. Substrate-bound nerve growth factor promotes neurite growth in peripheral nerve. Brain Res. 1987 Nov 10;425(2):360–363. doi: 10.1016/0006-8993(87)90520-8. [DOI] [PubMed] [Google Scholar]
  73. Sanes J. R. Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. J Cell Biol. 1982 May;93(2):442–451. doi: 10.1083/jcb.93.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Scherer S. S., Wang D. Y., Kuhn R., Lemke G., Wrabetz L., Kamholz J. Axons regulate Schwann cell expression of the POU transcription factor SCIP. J Neurosci. 1994 Apr;14(4):1930–1942. doi: 10.1523/JNEUROSCI.14-04-01930.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Scherer S. S., Xu Y. T., Roling D., Wrabetz L., Feltri M. L., Kamholz J. Expression of growth-associated protein-43 kD in Schwann cells is regulated by axon-Schwann cell interactions and cAMP. J Neurosci Res. 1994 Aug 1;38(5):575–589. doi: 10.1002/jnr.490380510. [DOI] [PubMed] [Google Scholar]
  77. Siironen J., Collan Y., Röyttä M. Axonal reinnervation does not influence Schwann cell proliferation after rat sciatic nerve transection. Brain Res. 1994 Aug 22;654(2):303–311. doi: 10.1016/0006-8993(94)90492-8. [DOI] [PubMed] [Google Scholar]
  78. Smahel J., Jentsch B. Stimulation of peripheral nerve regeneration by an isolated nerve segment. Ann Plast Surg. 1986 Jun;16(6):494–501. doi: 10.1097/00000637-198606000-00007. [DOI] [PubMed] [Google Scholar]
  79. Sobue G., Yasuda T., Mitsuma T., Ross A. H., Pleasure D. Expression of nerve growth factor receptor in human peripheral neuropathies. Ann Neurol. 1988 Jul;24(1):64–72. doi: 10.1002/ana.410240112. [DOI] [PubMed] [Google Scholar]
  80. Strasberg S. R., Mackinnon S. E., Hare G. M., Narini P. P., Hertl C., Hay J. B. Reduction in peripheral nerve allograft antigenicity with warm and cold temperature preservation. Plast Reconstr Surg. 1996 Jan;97(1):152–160. doi: 10.1097/00006534-199601000-00025. [DOI] [PubMed] [Google Scholar]
  81. Tang J. B., Gu Y. Q., Song Y. S. Repair of digital nerve defect with autogenous vein graft during flexor tendon surgery in zone 2. J Hand Surg Br. 1993 Aug;18(4):449–453. doi: 10.1016/0266-7681(93)90144-5. [DOI] [PubMed] [Google Scholar]
  82. Taniuchi M., Clark H. B., Johnson E. M., Jr Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4094–4098. doi: 10.1073/pnas.83.11.4094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Terzis J., Faibisoff B., Williams B. The nerve gap: suture under tension vs. graft. Plast Reconstr Surg. 1975 Aug;56(2):166–170. [PubMed] [Google Scholar]
  84. Thomson C. E., Griffiths I. R., McCulloch M. C., Kyriakides E., Barrie J. A., Montague P. In vitro studies of axonally-regulated Schwann cell genes during Wallerian degeneration. J Neurocytol. 1993 Aug;22(8):590–602. doi: 10.1007/BF01181486. [DOI] [PubMed] [Google Scholar]
  85. Timpl R., Brown J. C. The laminins. Matrix Biol. 1994 Aug;14(4):275–281. doi: 10.1016/0945-053x(94)90192-9. [DOI] [PubMed] [Google Scholar]
  86. Timpl R., Dziadek M. Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol. 1986;29:1–112. [PubMed] [Google Scholar]
  87. Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989 Apr 1;180(3):487–502. doi: 10.1111/j.1432-1033.1989.tb14673.x. [DOI] [PubMed] [Google Scholar]
  88. Tomaselli K. J., Reichardt L. F. Peripheral motoneuron interactions with laminin and Schwann cell-derived neurite-promoting molecules: developmental regulation of laminin receptor function. J Neurosci Res. 1988 Oct-Dec;21(2-4):275–285. doi: 10.1002/jnr.490210220. [DOI] [PubMed] [Google Scholar]
  89. Toyota B., Carbonetto S., David S. A dual laminin/collagen receptor acts in peripheral nerve regeneration. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1319–1322. doi: 10.1073/pnas.87.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Wang G. Y., Hirai K., Shimada H., Taji S., Zhong S. Z. Behavior of axons, Schwann cells and perineurial cells in nerve regeneration within transplanted nerve grafts: effects of anti-laminin and anti-fibronectin antisera. Brain Res. 1992 Jun 26;583(1-2):216–226. doi: 10.1016/s0006-8993(10)80027-7. [DOI] [PubMed] [Google Scholar]
  91. Wang G. Y., Hirai K., Shimada H. The role of laminin, a component of Schwann cell basal lamina, in rat sciatic nerve regeneration within antiserum-treated nerve grafts. Brain Res. 1992 Jan 20;570(1-2):116–125. doi: 10.1016/0006-8993(92)90571-p. [DOI] [PubMed] [Google Scholar]
  92. Weis J., Schröder J. M. Differential effects of nerve, muscle, and fat tissue on regenerating nerve fibers in vivo. Muscle Nerve. 1989 Sep;12(9):723–734. doi: 10.1002/mus.880120905. [DOI] [PubMed] [Google Scholar]
  93. Whitworth I. H., Doré C., Hall S., Green C. J., Terenghi G. Different muscle graft denaturing methods and their use for nerve repair. Br J Plast Surg. 1995 Oct;48(7):492–499. doi: 10.1016/0007-1226(95)90126-4. [DOI] [PubMed] [Google Scholar]
  94. Whitworth I. H., Terenghi G., Green C. J., Brown R. A., Stevens E., Tomlinson D. R. Targeted delivery of nerve growth factor via fibronectin conduits assists nerve regeneration in control and diabetic rats. Eur J Neurosci. 1995 Nov 1;7(11):2220–2225. doi: 10.1111/j.1460-9568.1995.tb00643.x. [DOI] [PubMed] [Google Scholar]
  95. Williams L. R., Azzam N. A., Zalewski A. A., Azzam R. N. Regenerating axons are not required to induce the formation of a Schwann cell cable in a silicone chamber. Exp Neurol. 1993 Mar;120(1):49–59. doi: 10.1006/exnr.1993.1039. [DOI] [PubMed] [Google Scholar]
  96. Willison H. J., Trapp B. D., Bacher J. D., Quarles R. H. The expression of myelin-associated glycoprotein in regenerating cat sciatic nerve. Brain Res. 1988 Mar 15;444(1):10–16. doi: 10.1016/0006-8993(88)90907-9. [DOI] [PubMed] [Google Scholar]
  97. Yajima K., Suzuki K. Demyelination and remyelination in the rat central nervous system following ethidium bromide injection. Lab Invest. 1979 Nov;41(5):385–392. [PubMed] [Google Scholar]
  98. de Curtis I. Neuronal interactions with the extracellular matrix. Curr Opin Cell Biol. 1991 Oct;3(5):824–831. doi: 10.1016/0955-0674(91)90056-5. [DOI] [PubMed] [Google Scholar]
  99. de Medinaceli L., Merle M. How exact should nerve stump coaptation be? A new answer given by "cell surgery". J Hand Surg Br. 1991 Dec;16(5):495–498. doi: 10.1016/0266-7681(91)90102-t. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES