Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1997 Jul;191(Pt 1):1–13. doi: 10.1046/j.1469-7580.1997.19110001.x

Review. Articular cartilage chondrons: form, function and failure

C ANTHONY POOLE 1
PMCID: PMC1467653  PMID: 9279653

Abstract

The chondrocyte and its pericellular microenvironment together represent the chondron, historically considered the primary structural, functional and metabolic unit of articular and other hyaline cartilages. This review summarises research over the last 10 years to establish the molecular anatomy, functional properties and metabolic contribution of the chondron in articular cartilage homeostasis, and its failure during the initiation and progression of degenerative osteoarthritis.

Keywords: Articular cartilage, chondrons, chondrocytes, pericellular microenvironment, osteoarthritis

Full Text

The Full Text of this article is available as a PDF (966.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonassar L. J., Frank E. H., Murray J. C., Paguio C. G., Moore V. L., Lark M. W., Sandy J. D., Wu J. J., Eyre D. R., Grodzinsky A. J. Changes in cartilage composition and physical properties due to stromelysin degradation. Arthritis Rheum. 1995 Feb;38(2):173–183. doi: 10.1002/art.1780380205. [DOI] [PubMed] [Google Scholar]
  2. Broom N. D., Myers D. B. A study of the structural response of wet hyaline cartilage to various loading situations. Connect Tissue Res. 1980;7(4):227–237. doi: 10.3109/03008208009152358. [DOI] [PubMed] [Google Scholar]
  3. Broom N. D., Poole C. A. A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition. J Anat. 1982 Aug;135(Pt 1):65–82. [PMC free article] [PubMed] [Google Scholar]
  4. Chang J., Poole C. A. Sequestration of type VI collagen in the pericellular microenvironment of adult chrondrocytes cultured in agarose. Osteoarthritis Cartilage. 1996 Dec;4(4):275–285. doi: 10.1016/s1063-4584(05)80105-0. [DOI] [PubMed] [Google Scholar]
  5. Dürr J., Lammi P., Goodman S. L., Aigner T., von der Mark K. Identification and immunolocalization of laminin in cartilage. Exp Cell Res. 1996 Jan 10;222(1):225–233. doi: 10.1006/excr.1996.0028. [DOI] [PubMed] [Google Scholar]
  6. Glant T. T., Hadházy C., Mikecz K., Sipos A. Appearance and persistence of fibronectin in cartilage. Specific interaction of fibronectin with collagen type II. Histochemistry. 1985;82(2):149–158. doi: 10.1007/BF00708199. [DOI] [PubMed] [Google Scholar]
  7. Guilak F., Ratcliffe A., Mow V. C. Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res. 1995 May;13(3):410–421. doi: 10.1002/jor.1100130315. [DOI] [PubMed] [Google Scholar]
  8. Hollander A. P., Pidoux I., Reiner A., Rorabeck C., Bourne R., Poole A. R. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest. 1995 Dec;96(6):2859–2869. doi: 10.1172/JCI118357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kielty C. M., Lees M., Shuttleworth C. A., Woolley D. Catabolism of intact type VI collagen microfibrils: susceptibility to degradation by serine proteinases. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1230–1236. doi: 10.1006/bbrc.1993.1349. [DOI] [PubMed] [Google Scholar]
  10. Kielty C. M., Whittaker S. P., Grant M. E., Shuttleworth C. A. Type VI collagen microfibrils: evidence for a structural association with hyaluronan. J Cell Biol. 1992 Aug;118(4):979–990. doi: 10.1083/jcb.118.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lark M. W., Gordy J. T., Weidner J. R., Ayala J., Kimura J. H., Williams H. R., Mumford R. A., Flannery C. R., Carlson S. S., Iwata M. Cell-mediated catabolism of aggrecan. Evidence that cleavage at the "aggrecanase" site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J Biol Chem. 1995 Feb 10;270(6):2550–2556. doi: 10.1074/jbc.270.6.2550. [DOI] [PubMed] [Google Scholar]
  12. Mason R. M. Recent advances in the biochemistry of hyaluronic acid in cartilage. Prog Clin Biol Res. 1981;54:87–112. [PubMed] [Google Scholar]
  13. Miosge N., Flachsbart K., Goetz W., Schultz W., Kresse H., Herken R. Light and electron microscopical immunohistochemical localization of the small proteoglycan core proteins decorin and biglycan in human knee joint cartilage. Histochem J. 1994 Dec;26(12):939–945. [PubMed] [Google Scholar]
  14. Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays. 1995 Dec;17(12):1039–1048. doi: 10.1002/bies.950171208. [DOI] [PubMed] [Google Scholar]
  15. Poole C. A., Ayad S., Gilbert R. T. Chondrons from articular cartilage. V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy. J Cell Sci. 1992 Dec;103(Pt 4):1101–1110. doi: 10.1242/jcs.103.4.1101. [DOI] [PubMed] [Google Scholar]
  16. Poole C. A., Ayad S., Schofield J. R. Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci. 1988 Aug;90(Pt 4):635–643. doi: 10.1242/jcs.90.4.635. [DOI] [PubMed] [Google Scholar]
  17. Poole C. A., Brookes N. H., Gilbert R. T., Beaumont B. W., Crowther A., Scott L., Merrilees M. J. Detection of viable and non-viable cells in connective tissue explants using the fixable fluoroprobes 5-chloromethylfluorescein diacetate and ethidium homodimer-1. Connect Tissue Res. 1996;33(4):233–241. doi: 10.3109/03008209609028880. [DOI] [PubMed] [Google Scholar]
  18. Poole C. A., Flint M. H., Beaumont B. W. Chondrons extracted from canine tibial cartilage: preliminary report on their isolation and structure. J Orthop Res. 1988;6(3):408–419. doi: 10.1002/jor.1100060312. [DOI] [PubMed] [Google Scholar]
  19. Poole C. A., Flint M. H., Beaumont B. W. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res. 1987;5(4):509–522. doi: 10.1002/jor.1100050406. [DOI] [PubMed] [Google Scholar]
  20. Poole C. A., Flint M. H., Beaumont B. W. Morphological and functional interrelationships of articular cartilage matrices. J Anat. 1984 Jan;138(Pt 1):113–138. [PMC free article] [PubMed] [Google Scholar]
  21. Poole C. A., Glant T. T., Schofield J. R. Chondrons from articular cartilage. (IV). Immunolocalization of proteoglycan epitopes in isolated canine tibial chondrons. J Histochem Cytochem. 1991 Sep;39(9):1175–1187. doi: 10.1177/39.9.1717545. [DOI] [PubMed] [Google Scholar]
  22. Poole C. A., Honda T., Skinner S. J., Schofield J. R., Hyde K. F., Shinkai H. Chondrons from articular cartilage (II): Analysis of the glycosaminoglycans in the cellular microenvironment of isolated canine chondrons. Connect Tissue Res. 1990;24(3-4):319–330. doi: 10.3109/03008209009152158. [DOI] [PubMed] [Google Scholar]
  23. Poole C. A., Matsuoka A., Schofield J. R. Chondrons from articular cartilage. III. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. Arthritis Rheum. 1991 Jan;34(1):22–35. doi: 10.1002/art.1780340105. [DOI] [PubMed] [Google Scholar]
  24. Poole C. A., Wotton S. F., Duance V. C. Localization of type IX collagen in chondrons isolated from porcine articular cartilage and rat chondrosarcoma. Histochem J. 1988 Oct;20(10):567–574. doi: 10.1007/BF01002611. [DOI] [PubMed] [Google Scholar]
  25. Ronzière M. C., Ricard-Blum S., Tiollier J., Hartmann D. J., Garrone R., Herbage D. Comparative analysis of collagens solubilized from human foetal, and normal and osteoarthritic adult articular cartilage, with emphasis on type VI collagen. Biochim Biophys Acta. 1990 Apr 19;1038(2):222–230. doi: 10.1016/0167-4838(90)90209-x. [DOI] [PubMed] [Google Scholar]
  26. Salter D. M., Hughes D. E., Simpson R., Gardner D. L. Integrin expression by human articular chondrocytes. Br J Rheumatol. 1992 Apr;31(4):231–234. doi: 10.1093/rheumatology/31.4.231. [DOI] [PubMed] [Google Scholar]
  27. Sandy J. D., O'Neill J. R., Ratzlaff L. C. Acquisition of hyaluronate-binding affinity in vivo by newly synthesized cartilage proteoglycans. Biochem J. 1989 Mar 15;258(3):875–880. doi: 10.1042/bj2580875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wotton S. F., Jeacocke R. E., Maciewicz R. A., Wardale R. J., Duance V. C. The application of scanning confocal microscopy in cartilage research. Histochem J. 1991 Jul;23(7):328–335. doi: 10.1007/BF01044964. [DOI] [PubMed] [Google Scholar]
  29. Wu J. J., Lark M. W., Chun L. E., Eyre D. R. Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J Biol Chem. 1991 Mar 25;266(9):5625–5628. [PubMed] [Google Scholar]
  30. Wu J. J., Woods P. E., Eyre D. R. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem. 1992 Nov 15;267(32):23007–23014. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES