Abstract
Connective tissues synthesise and secrete a family of matrix metalloproteinases (MMPs) which are capable of degrading most components of the extracellular matrix. Animal studies suggest that the MMPs play a role in bone turnover. Using specific polyclonal antisera, immunohistochemistry was used to determine the patterns of synthesis and distribution of collagenase (MMP-1), stromelysin (MMP-3), gelatinase A (MMP-2) and gelatinase B (MMP-9) and of the tissue inhibitor of metalloproteinases-1 (TIMP-1) within developing human osteophytic bone. The different MMPs and TIMP showed distinct patterns of localisation. Collagenase expression was seen at sites of vascular invasion, in osteoblasts synthesising new matrix and in some osteoclasts at sites of resorption. Chondrocytes demonstrated variable levels of collagenase and stromelysin expression throughout the proliferative and hypertrophic regions, stromelysin showing both cell-associated and strong matrix staining. Intense gelatinase B expression was observed at sites of bone resorption in osteoclasts and mononuclear cells. Gelatinase A was only weakly expressed in the fibrocartilage adjacent to areas of endochondral ossification. There was widespread but variable expression of TIMP-1 throughout the fibrous tissue, cartilage and bone. These results indicate that MMPs play a role in the development of human bone from cartilage and fibrous tissue and are likely to have multiple functions.
Keywords: Collagenase, gelatinase, stromelysin, osteoblasts, osteoclasts
Full Text
The Full Text of this article is available as a PDF (602.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aigner T., Dietz U., Stöss H., von der Mark K. Differential expression of collagen types I, II, III, and X in human osteophytes. Lab Invest. 1995 Aug;73(2):236–243. [PubMed] [Google Scholar]
- Allan J. A., Hembry R. M., Angal S., Reynolds J. J., Murphy G. Binding of latent and high Mr active forms of stromelysin to collagen is mediated by the C-terminal domain. J Cell Sci. 1991 Aug;99(Pt 4):789–795. doi: 10.1242/jcs.99.4.789. [DOI] [PubMed] [Google Scholar]
- Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
- Blumenthal N. C., Posner A. S., Silverman L. D., Rosenberg L. C. Effect of proteoglycans on in vitro hydroxyapatite formation. Calcif Tissue Int. 1979 Mar 13;27(1):75–82. doi: 10.1007/BF02441164. [DOI] [PubMed] [Google Scholar]
- Bord S., Horner A., Hembry R. M., Reynolds J. J., Compston J. E. Production of collagenase by human osteoblasts and osteoclasts in vivo. Bone. 1996 Jul;19(1):35–40. doi: 10.1016/8756-3282(96)00106-8. [DOI] [PubMed] [Google Scholar]
- Bradbeer J. N., Lindsay P. C., Reeve J. Fluctuation of mineral apposition rate at individual bone-remodeling sites in human iliac cancellous bone: independent correlations with osteoid width and osteoblastic alkaline phosphatase activity. J Bone Miner Res. 1994 Nov;9(11):1679–1686. doi: 10.1002/jbmr.5650091103. [DOI] [PubMed] [Google Scholar]
- Breckon J. J., Hembry R. M., Reynolds J. J., Meikle M. C. Matrix metalloproteinases and TIMP-1 localization at sites of osteogenesis in the craniofacial region of the rabbit embryo. Anat Rec. 1995 Jun;242(2):177–187. doi: 10.1002/ar.1092420206. [DOI] [PubMed] [Google Scholar]
- Brown C. C., Hembry R. M., Reynolds J. J. Immunolocalization of metalloproteinases and their inhibitor in the rabbit growth plate. J Bone Joint Surg Am. 1989 Apr;71(4):580–593. [PubMed] [Google Scholar]
- De Bernard B., Stagni N., Colautti I., Vittur F., Bonucci E. Glycosaminoglycans and endochondral calcification. Clin Orthop Relat Res. 1977 Jul-Aug;(126):285–291. [PubMed] [Google Scholar]
- Dean D. D., Muniz O. E., Howell D. S. Association of collagenase and tissue inhibitor of metalloproteinases (TIMP) with hypertrophic cell enlargement in the growth plate. Matrix. 1989 Nov;9(5):366–375. doi: 10.1016/s0934-8832(89)80041-1. [DOI] [PubMed] [Google Scholar]
- Delaisse J. M., Eeckhout Y., Vaes G. Bone-resorbing agents affect the production and distribution of procollagenase as well as the activity of collagenase in bone tissue. Endocrinology. 1988 Jul;123(1):264–276. doi: 10.1210/endo-123-1-264. [DOI] [PubMed] [Google Scholar]
- Delaissé J. M., Eeckhout Y., Neff L., François-Gillet C., Henriet P., Su Y., Vaes G., Baron R. (Pro)collagenase (matrix metalloproteinase-1) is present in rodent osteoclasts and in the underlying bone-resorbing compartment. J Cell Sci. 1993 Dec;106(Pt 4):1071–1082. doi: 10.1242/jcs.106.4.1071. [DOI] [PubMed] [Google Scholar]
- Dodds R. A., Connor J. R., James I. E., Rykaczewski E. L., Appelbaum E., Dul E., Gowen M. Human osteoclasts, not osteoblasts, deposit osteopontin onto resorption surfaces: an in vitro and ex vivo study of remodeling bone. J Bone Miner Res. 1995 Nov;10(11):1666–1680. doi: 10.1002/jbmr.5650101109. [DOI] [PubMed] [Google Scholar]
- Everts V., Delaissé J. M., Korper W., Niehof A., Vaes G., Beertsen W. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases. J Cell Physiol. 1992 Feb;150(2):221–231. doi: 10.1002/jcp.1041500202. [DOI] [PubMed] [Google Scholar]
- Heath J. K., Atkinson S. J., Meikle M. C., Reynolds J. J. Mouse osteoblasts synthesize collagenase in response to bone resorbing agents. Biochim Biophys Acta. 1984 Nov 6;802(1):151–154. doi: 10.1016/0304-4165(84)90046-1. [DOI] [PubMed] [Google Scholar]
- Hembry R. M., Bagga M. R., Reynolds J. J., Hamblen D. L. Immunolocalisation studies on six matrix metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo- and rheumatoid arthritis. Ann Rheum Dis. 1995 Jan;54(1):25–32. doi: 10.1136/ard.54.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hembry R. M., Murphy G., Reynolds J. J. Immunolocalization of tissue inhibitor of metalloproteinases (TIMP) in human cells. Characterization and use of a specific antiserum. J Cell Sci. 1985 Feb;73:105–119. doi: 10.1242/jcs.73.1.105. [DOI] [PubMed] [Google Scholar]
- Hill P. A., Murphy G., Docherty A. J., Hembry R. M., Millican T. A., Reynolds J. J., Meikle M. C. The effects of selective inhibitors of matrix metalloproteinases (MMPs) on bone resorption and the identification of MMPs and TIMP-1 in isolated osteoclasts. J Cell Sci. 1994 Nov;107(Pt 11):3055–3064. doi: 10.1242/jcs.107.11.3055. [DOI] [PubMed] [Google Scholar]
- Hipps D. S., Hembry R. M., Docherty A. J., Reynolds J. J., Murphy G. Purification and characterization of human 72-kDa gelatinase (type IV collagenase). Use of immunolocalisation to demonstrate the non-coordinate regulation of the 72-kDa and 95-kDa gelatinases by human fibroblasts. Biol Chem Hoppe Seyler. 1991 Apr;372(4):287–296. doi: 10.1515/bchm3.1991.372.1.287. [DOI] [PubMed] [Google Scholar]
- Karelina T. V., Goldberg G. I., Eisen A. Z. Matrix metalloproteinases in blood vessel development in human fetal skin and in cutaneous tumors. J Invest Dermatol. 1995 Sep;105(3):411–417. doi: 10.1111/1523-1747.ep12321097. [DOI] [PubMed] [Google Scholar]
- Loveridge N., Dean V., Goltzman D., Hendy G. N. Bioactivity of parathyroid hormone and parathyroid hormone-like peptide: agonist and antagonist activities of amino-terminal fragments as assessed by the cytochemical bioassay and in situ biochemistry. Endocrinology. 1991 Apr;128(4):1938–1946. doi: 10.1210/endo-128-4-1938. [DOI] [PubMed] [Google Scholar]
- Meikle M. C., Bord S., Hembry R. M., Compston J., Croucher P. I., Reynolds J. J. Human osteoblasts in culture synthesize collagenase and other matrix metalloproteinases in response to osteotropic hormones and cytokines. J Cell Sci. 1992 Dec;103(Pt 4):1093–1099. doi: 10.1242/jcs.103.4.1093. [DOI] [PubMed] [Google Scholar]
- Meikle M. C., Bord S., Hembry R. M., Reynolds J. J. The synthesis of collagenase, gelatinase-A (72 kDa) and -B (95 kDa), and TIMP-1 and -2 by human osteoblasts from normal and arthritic bone. Bone. 1995 Sep;17(3):255–260. doi: 10.1016/8756-3282(95)00219-4. [DOI] [PubMed] [Google Scholar]
- Meikle M. C., McGarrity A. M., Thomson B. M., Reynolds J. J. Bone-derived growth factors modulate collagenase and TIMP (tissue inhibitor of metalloproteinases) activity and type I collagen degradation by mouse calvarial osteoblasts. Bone Miner. 1991 Jan;12(1):41–55. doi: 10.1016/0169-6009(91)90120-o. [DOI] [PubMed] [Google Scholar]
- Merry K., Dodds R., Littlewood A., Gowen M. Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci. 1993 Apr;104(Pt 4):1013–1020. doi: 10.1242/jcs.104.4.1013. [DOI] [PubMed] [Google Scholar]
- Middleton J., Arnott N., Walsh S., Beresford J. Osteoblasts and osteoclasts in adult human osteophyte tissue express the mRNAs for insulin-like growth factors I and II and the type 1 IGF receptor. Bone. 1995 Mar;16(3):287–293. doi: 10.1016/8756-3282(94)00040-9. [DOI] [PubMed] [Google Scholar]
- Murphy G., Allan J. A., Willenbrock F., Cockett M. I., O'Connell J. P., Docherty A. J. The role of the C-terminal domain in collagenase and stromelysin specificity. J Biol Chem. 1992 May 15;267(14):9612–9618. [PubMed] [Google Scholar]
- Murphy G., Cockett M. I., Stephens P. E., Smith B. J., Docherty A. J. Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochem J. 1987 Nov 15;248(1):265–268. doi: 10.1042/bj2480265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy G., Ward R., Hembry R. M., Reynolds J. J., Kühn K., Tryggvason K. Characterization of gelatinase from pig polymorphonuclear leucocytes. A metalloproteinase resembling tumour type IV collagenase. Biochem J. 1989 Mar 1;258(2):463–472. doi: 10.1042/bj2580463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinchback J. S., Gibbins J. R., Hunter N. Vascular co-localization of proteolytic enzymes and proteinase inhibitors in advanced periodontitis. J Pathol. 1996 Jul;179(3):326–332. doi: 10.1002/(SICI)1096-9896(199607)179:3<326::AID-PATH562>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Raina V. Normal osteoid tissue. J Clin Pathol. 1972 Mar;25(3):229–232. doi: 10.1136/jcp.25.3.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao V. H., Bridge J. A., Neff J. R., Schaefer G. B., Buehler B. A., Vishwanatha J. K., Pollock R. E., Nicolson G. L., Yamamoto M., Gokaslam Z. L. Expression of 72 kDa and 92 kDa type IV collagenases from human giant-cell tumor of bone. Clin Exp Metastasis. 1995 Nov;13(6):420–426. doi: 10.1007/BF00118181. [DOI] [PubMed] [Google Scholar]
- Stricklin G. P., Nanney L. B. Immunolocalization of collagenase and TIMP in healing human burn wounds. J Invest Dermatol. 1994 Oct;103(4):488–492. doi: 10.1111/1523-1747.ep12395601. [DOI] [PubMed] [Google Scholar]
- Whitham S. E., Murphy G., Angel P., Rahmsdorf H. J., Smith B. J., Lyons A., Harris T. J., Reynolds J. J., Herrlich P., Docherty A. J. Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem J. 1986 Dec 15;240(3):913–916. doi: 10.1042/bj2400913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witty J. P., Foster S. A., Stricklin G. P., Matrisian L. M., Stern P. H. Parathyroid hormone-induced resorption in fetal rat limb bones is associated with production of the metalloproteinases collagenase and gelatinase B. J Bone Miner Res. 1996 Jan;11(1):72–78. doi: 10.1002/jbmr.5650110111. [DOI] [PubMed] [Google Scholar]
- Wucherpfennig A. L., Li Y. P., Stetler-Stevenson W. G., Rosenberg A. E., Stashenko P. Expression of 92 kD type IV collagenase/gelatinase B in human osteoclasts. J Bone Miner Res. 1994 Apr;9(4):549–556. doi: 10.1002/jbmr.5650090415. [DOI] [PubMed] [Google Scholar]