Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1997 Aug;191(Pt 2):201–213. doi: 10.1046/j.1469-7580.1997.19120201.x

Morphological and morphometric characterisation of Onuf's nucleus in the spinal cord in man

A H PULLEN 1 , D TUCKER 2 , J E MARTIN 2
PMCID: PMC1467673  PMID: 9306197

Abstract

In the absence of a systematic morphometric study of Onuf's nucleus in man, this investigation defines the limits of variation of segmental position and the range of length and volume of Onuf's nucleus in 6 normal humans displaying no neurological disease (2 males, 4 females). Serial section reconstruction methods in conjunction with the disector method provided information on the numbers, sizes and shapes of the constituent motor neurons of Onuf's nucleus. In contrast to previous descriptions, the cranial origin of Onuf's nucleus occurred in rostral S1 in 50% of subjects, and midcaudal S1 in the remaining subjects. Onuf's nucleus varied in length between 4 and 7 mm, and was 0.2–0.37 mm3 in volume. Differences in length or volume between males or females, or between the left and right side of the cord were not statistically significant. Neurons in Onuf's nucleus varied in diameter between 10 μm and 60 μm (mean 26 μm) and their mean number was 625±137. A higher density of neurons occurred at the cranial and caudal ends of the nucleus relative to the middle. While 37% of neurons were approximately spherical (shape index ∼1), 44% were ellipsoid and 19% fusiform (shape indices varying between 0.26 and 0.8). These findings are compared with previous studies of Onuf's nucleus in man and animals. The results form a basis for further studies on Onuf's nucleus in normality and neurodegenerative diseases.

Keywords: Motor neurons, sacral spinal cord

Full Text

The Full Text of this article is available as a PDF (645.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bjugn R., Gundersen H. J. Estimate of the total number of neurons and glial and endothelial cells in the rat spinal cord by means of the optical disector. J Comp Neurol. 1993 Feb 15;328(3):406–414. doi: 10.1002/cne.903280307. [DOI] [PubMed] [Google Scholar]
  2. Breedlove S. M., Arnold A. P. Hormonal control of a developing neuromuscular system. I. Complete Demasculinization of the male rat spinal nucleus of the bulbocavernosus using the anti-androgen flutamide. J Neurosci. 1983 Feb;3(2):417–423. doi: 10.1523/JNEUROSCI.03-02-00417.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breedlove S. M., Arnold A. P. Hormonal control of a developing neuromuscular system. II. Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus. J Neurosci. 1983 Feb;3(2):424–432. doi: 10.1523/JNEUROSCI.03-02-00424.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breedlove S. M., Arnold A. P. Sexually dimorphic motor nucleus in the rat lumbar spinal cord: response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Res. 1981 Nov 30;225(2):297–307. doi: 10.1016/0006-8993(81)90837-4. [DOI] [PubMed] [Google Scholar]
  5. Coggeshall R. E. A consideration of neural counting methods. Trends Neurosci. 1992 Jan;15(1):9–13. doi: 10.1016/0166-2236(92)90339-a. [DOI] [PubMed] [Google Scholar]
  6. Conradi S. Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat. Acta Physiol Scand Suppl. 1969;332:5–48. [PubMed] [Google Scholar]
  7. Forger N. G., Breedlove S. M. Sexual dimorphism in human and canine spinal cord: role of early androgen. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7527–7531. doi: 10.1073/pnas.83.19.7527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson S. J., Polak J. M., Katagiri T., Su H., Weller R. O., Brownell D. B., Holland S., Hughes J. T., Kikuyama S., Ball J. A comparison of the distributions of eight peptides in spinal cord from normal controls and cases of motor neurone disease with special reference to Onuf's nucleus. Brain Res. 1988 Dec 6;474(2):255–278. doi: 10.1016/0006-8993(88)90440-4. [DOI] [PubMed] [Google Scholar]
  9. Holstege G., Tan J. Supraspinal control of motoneurons innervating the striated muscles of the pelvic floor including urethral and anal sphincters in the cat. Brain. 1987 Oct;110(Pt 5):1323–1344. doi: 10.1093/brain/110.5.1323. [DOI] [PubMed] [Google Scholar]
  10. Irving D., Rebeiz J. J., Tomlinson B. E. The numbers of limb motor neurones in the individual segments of the human lumbosacral spinal cord. J Neurol Sci. 1974 Feb;21(2):203–212. doi: 10.1016/0022-510x(74)90072-0. [DOI] [PubMed] [Google Scholar]
  11. Iwata M., Hirano A. Sparing of the Onufrowicz nucleus in sacral anterior horn lesions. Ann Neurol. 1978 Sep;4(3):245–249. doi: 10.1002/ana.410040309. [DOI] [PubMed] [Google Scholar]
  12. Johnson I. P., Sears T. A. Ultrastructure of interneurons within motor nuclei of the thoracic region of the spinal cord of the adult cat. J Anat. 1988 Dec;161:171–185. [PMC free article] [PubMed] [Google Scholar]
  13. Kawatani M., Nagel J., de Groat W. C. Identification of neuropeptides in pelvic and pudendal nerve afferent pathways to the sacral spinal cord of the cat. J Comp Neurol. 1986 Jul 1;249(1):117–132. doi: 10.1002/cne.902490109. [DOI] [PubMed] [Google Scholar]
  14. Kiernan J. A., Hudson A. J. Changes in shapes of surviving motor neurons in amyotrophic lateral sclerosis. Brain. 1993 Feb;116(Pt 1):203–215. doi: 10.1093/brain/116.1.203. [DOI] [PubMed] [Google Scholar]
  15. Kihira T., Yoshida S., Uebayashi Y., Yase Y., Yoshimasu F. Involvement of Onuf's nucleus in ALS. Demonstration of intraneuronal conglomerate inclusions and Bunina bodies. J Neurol Sci. 1991 Aug;104(2):119–128. doi: 10.1016/0022-510x(91)90300-v. [DOI] [PubMed] [Google Scholar]
  16. Kirby R., Fowler C., Gosling J., Bannister R. Urethro-vesical dysfunction in progressive autonomic failure with multiple system atrophy. J Neurol Neurosurg Psychiatry. 1986 May;49(5):554–562. doi: 10.1136/jnnp.49.5.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Konishi A., Sato M., Mizuno N., Itoh K., Nomura S., Sugimoto T. An electron microscope study of the areas of the Onuf's nucleus in the cat. Brain Res. 1978 Nov 10;156(2):333–338. doi: 10.1016/0006-8993(78)90514-0. [DOI] [PubMed] [Google Scholar]
  18. Konno H., Yamamoto T., Iwasaki Y., Iizuka H. Shy-Drager syndrome and amyotrophic lateral sclerosis. Cytoarchitectonic and morphometric studies of sacral autonomic neurons. J Neurol Sci. 1986 Apr;73(2):193–204. doi: 10.1016/0022-510x(86)90130-9. [DOI] [PubMed] [Google Scholar]
  19. Kuzuhara S., Kanazawa I., Nakanishi T. Topographical localization of the Onuf's nuclear neurons innervating the rectal and vesical striated sphincter muscles: a retrograde fluorescent double labeling in cat and dog. Neurosci Lett. 1980 Feb;16(2):125–130. doi: 10.1016/0304-3940(80)90331-6. [DOI] [PubMed] [Google Scholar]
  20. Lagerbäck P. A. An ultrastructural study of cat lumbosacral gamma-motoneurons after retrograde labelling with horseradish peroxidase. J Comp Neurol. 1985 Oct 15;240(3):256–264. doi: 10.1002/cne.902400304. [DOI] [PubMed] [Google Scholar]
  21. Lagerbäck P. A., Ronnevi L. O. An ultrastructural study of serially sectioned Renshaw cells. II. Synaptic types. Brain Res. 1982 Aug 26;246(2):181–192. doi: 10.1016/0006-8993(82)91166-0. [DOI] [PubMed] [Google Scholar]
  22. Leedy M. G., Bresnahan J. C., Mawe G. M., Beattie M. S. Differences in synaptic inputs to preganglionic neurons in the dorsal and lateral band subdivisions of the cat sacral parasympathetic nucleus. J Comp Neurol. 1988 Feb 1;268(1):84–90. doi: 10.1002/cne.902680109. [DOI] [PubMed] [Google Scholar]
  23. Mannen T., Iwata M., Toyokura Y., Nagashima K. Preservation of a certain motoneurone group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. J Neurol Neurosurg Psychiatry. 1977 May;40(5):464–469. doi: 10.1136/jnnp.40.5.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mayhew T. M. A review of recent advances in stereology for quantifying neural structure. J Neurocytol. 1992 May;21(5):313–328. doi: 10.1007/BF01191700. [DOI] [PubMed] [Google Scholar]
  25. Nakagawa S. Onuf's nucleus of the sacral cord in a South American monkey (Saimiri): its location and bilateral cortical input from area 4. Brain Res. 1980 Jun 9;191(2):337–344. doi: 10.1016/0006-8993(80)91285-8. [DOI] [PubMed] [Google Scholar]
  26. Pakkenberg B., Gundersen H. J. Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionator. J Microsc. 1988 Apr;150(Pt 1):1–20. doi: 10.1111/j.1365-2818.1988.tb04582.x. [DOI] [PubMed] [Google Scholar]
  27. Pullen A. H., Martin J. E., Swash M. Ultrastructure of pre-synaptic input to motor neurons in Onuf's nucleus: controls and motor neuron disease. Neuropathol Appl Neurobiol. 1992 Jun;18(3):213–231. doi: 10.1111/j.1365-2990.1992.tb00784.x. [DOI] [PubMed] [Google Scholar]
  28. Pullen A. H., Martin J. E. Ultrastructural abnormalities with inclusions in Onuf's nucleus in motor neuron disease (amyotrophic lateral sclerosis). Neuropathol Appl Neurobiol. 1995 Aug;21(4):327–340. doi: 10.1111/j.1365-2990.1995.tb01067.x. [DOI] [PubMed] [Google Scholar]
  29. Pullen A. H. Quantitative synaptology of feline motoneurones to external anal sphincter muscle. J Comp Neurol. 1988 Mar 15;269(3):414–424. doi: 10.1002/cne.902690308. [DOI] [PubMed] [Google Scholar]
  30. REXED B. A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol. 1954 Apr;100(2):297–379. doi: 10.1002/cne.901000205. [DOI] [PubMed] [Google Scholar]
  31. Roppolo J. R., Nadelhaft I., de Groat W. C. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase. J Comp Neurol. 1985 Apr 22;234(4):475–488. doi: 10.1002/cne.902340406. [DOI] [PubMed] [Google Scholar]
  32. Sasaki S., Maruyama S. A fine structural study of Onuf's nucleus in sporadic amyotrophic lateral sclerosis. J Neurol Sci. 1993 Oct;119(1):28–37. doi: 10.1016/0022-510x(93)90188-5. [DOI] [PubMed] [Google Scholar]
  33. Sato M., Mizuno N., Konishi A. Localization of motoneurons innervating perineal muscles: a HRP study in cat. Brain Res. 1978 Jan 20;140(1):149–154. doi: 10.1016/0006-8993(78)90244-5. [DOI] [PubMed] [Google Scholar]
  34. Schrøder H. D. Onuf's nucleus X: a morphological study of a human spinal nucleus. Anat Embryol (Berl) 1981;162(4):443–453. doi: 10.1007/BF00301870. [DOI] [PubMed] [Google Scholar]
  35. Schrøder H. D. Organization of the motoneurons innervating the pelvic muscles of the male rat. J Comp Neurol. 1980 Aug 1;192(3):567–587. doi: 10.1002/cne.901920313. [DOI] [PubMed] [Google Scholar]
  36. Schrøder H. D. Somatostatin in the caudal spinal cord: an immunohistochemical study of the spinal centers involved in the innervation of pelvic organs. J Comp Neurol. 1984 Mar 1;223(3):400–414. doi: 10.1002/cne.902230306. [DOI] [PubMed] [Google Scholar]
  37. Sterio D. C. The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc. 1984 May;134(Pt 2):127–136. doi: 10.1111/j.1365-2818.1984.tb02501.x. [DOI] [PubMed] [Google Scholar]
  38. Strick P. L., Burke R. E., Kanda K., Kim C. C., Walmsley B. Differences between alpha and gamma motoneurons labeled with horseradish peroxidase by retrograde transport. Brain Res. 1976 Sep 3;113(3):582–588. doi: 10.1016/0006-8993(76)90059-7. [DOI] [PubMed] [Google Scholar]
  39. Sung J. H., Mastri A. R., Segal E. Pathology of Shy-Drager syndrome. J Neuropathol Exp Neurol. 1979 Jul;38(4):353–368. doi: 10.1097/00005072-197907000-00001. [DOI] [PubMed] [Google Scholar]
  40. Takahashi K., Yamamoto T. Ultrastructure of the cell group X of Onuf in the cat sacral spinal cord. Z Mikrosk Anat Forsch. 1979;93(2):244–256. [PubMed] [Google Scholar]
  41. Tashiro T., Satoda T., Matsushima R., Mizuno N. Convergence of serotonin-, enkephalin- and substance P-like immunoreactive afferent fibers on single pudendal motoneurons in Onuf's nucleus of the cat: a light microscope study combining the triple immunocytochemical staining technique with the retrograde HRP-tracing method. Brain Res. 1989 Mar 6;481(2):392–398. doi: 10.1016/0006-8993(89)90821-4. [DOI] [PubMed] [Google Scholar]
  42. Thor K. B., Morgan C., Nadelhaft I., Houston M., De Groat W. C. Organization of afferent and efferent pathways in the pudendal nerve of the female cat. J Comp Neurol. 1989 Oct 8;288(2):263–279. doi: 10.1002/cne.902880206. [DOI] [PubMed] [Google Scholar]
  43. Tomlinson B. E., Irving D., Rebeiz J. J. Total numbers of limb motor neurones in the human lumbosacral cord and an analysis of the accuracy of various sampling procedures. J Neurol Sci. 1973 Nov;20(3):313–327. doi: 10.1016/0022-510x(73)90193-7. [DOI] [PubMed] [Google Scholar]
  44. Ueyama T., Mizuno N., Takahashi O., Nomura S., Arakawa H., Matsushima R. Central distribution of efferent and afferent components of the pudendal nerve in macaque monkeys. J Comp Neurol. 1985 Feb 22;232(4):548–556. doi: 10.1002/cne.902320411. [DOI] [PubMed] [Google Scholar]
  45. Ulfhake B., Cullheim S. A quantitative light microscopic study of the dendrites of cat spinal gamma -motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol. 1981 Nov 10;202(4):585–596. doi: 10.1002/cne.902020410. [DOI] [PubMed] [Google Scholar]
  46. Ulfhake B., Kellerth J. O. A quantitative light microscopic study of the dendrites of cat spinal alpha-motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol. 1981 Nov 10;202(4):571–583. doi: 10.1002/cne.902020409. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES