Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1997 Aug;191(Pt 2):229–244. doi: 10.1046/j.1469-7580.1997.19120229.x

The neurofilament antibody RT97 recognises a developmentally regulated phosphorylation epitope on microtubule-associated protein 1B

MANDY JOHNSTONE 1 , ROBERT G GOOLD 1 , ITZHAK FISCHER 2 , PHILLIP R GORDON-WEEKS 1
PMCID: PMC1467675  PMID: 9306199

Abstract

Microtubules are important for the growth and maintenance of stable neuronal processes and their organisation is controlled partly by microtubule-associated proteins (MAPs). MAP 1B is the first MAP to be expressed in neurons and plays an important role in neurite outgrowth. MAP 1B is phosphorylated at multiple sites and it is believed that the function of the protein is regulated by its phosphorylation state. We have shown that the monoclonal antibody (mAb) RT97, which recognises phosphorylated epitopes on neurofilament proteins, fetal tau, and on Alzheimer's paired helical filament-tau, also recognises a developmentally regulated phosphorylation epitope on MAP 1B. In the rat cerebellum, Western blot analysis shows that mAb RT97 recognises the upper band of the MAP 1B doublet and that the amount of this epitope peaks very early postnatally and decreases with increasing age so that it is absent in the adult, despite the continued expression of MAP 1B in the adult. We confirmed that mAb RT97 binds to MAP 1B by showing that it recognises MAP 1B immunoprecipitated from postnatal rat cerebellum using polyclonal antibodies to recombinant MAP 1B proteins. We established that the RT97 epitope on MAP 1B is phosphorylated by showing that antibody binding was abolished by alkaline phosphatase treatment of immunoblots. Epitope mapping experiments suggest that the mAb RT97 site on MAP 1B is near the N-terminus of the molecule. Despite our immunoblotting data, immunostaining of sections of postnatal rat cerebellum with mAb RT97 shows a staining pattern typical of neurofilaments with no apparent staining of MAP 1B. For instance, basket cell axons and axons in the granule cell layer and white matter stained, whereas parallel fibres did not. These results suggest that the MAP 1B epitope is masked or lost under the immunocytochemical conditions in which the cerebellar sections are prepared. The upper band of the MAP 1B doublet is believed to be predominantly phosphorylated by proline-directed protein kinases(PDPKs). PDPKs are also good candidates for phosphorylating neurofilament proteins and tau and therefore we postulate that the sites recognised by RT97 on these neuronal cytoskeletal proteins may be phosphorylated by similar kinases. Important goals are to determine the precise location of the RT97 epitope on MAP 1B and the kinase responsible.

Keywords: Cerebellum, axonal growth, tau protein, Alzheimer's disease

Full Text

The Full Text of this article is available as a PDF (871.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aletta J. M., Lewis S. A., Cowan N. J., Greene L. A. Nerve growth factor regulates both the phosphorylation and steady-state levels of microtubule-associated protein 1.2 (MAP1.2). J Cell Biol. 1988 May;106(5):1573–1581. doi: 10.1083/jcb.106.5.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderton B. H., Breinburg D., Downes M. J., Green P. J., Tomlinson B. E., Ulrich J., Wood J. N., Kahn J. Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature. 1982 Jul 1;298(5869):84–86. doi: 10.1038/298084a0. [DOI] [PubMed] [Google Scholar]
  3. Black M. M., Slaughter T., Fischer I. Microtubule-associated protein 1b (MAP1b) is concentrated in the distal region of growing axons. J Neurosci. 1994 Feb;14(2):857–870. doi: 10.1523/JNEUROSCI.14-02-00857.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom G. S., Luca F. C., Vallee R. B. Microtubule-associated protein 1B: identification of a major component of the neuronal cytoskeleton. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5404–5408. doi: 10.1073/pnas.82.16.5404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyne L. J., Martin K., Hockfield S., Fischer I. Expression and distribution of phosphorylated MAP1B in growing axons of cultured hippocampal neurons. J Neurosci Res. 1995 Mar 1;40(4):439–450. doi: 10.1002/jnr.490400403. [DOI] [PubMed] [Google Scholar]
  6. Brugg B., Matus A. PC12 cells express juvenile microtubule-associated proteins during nerve growth factor-induced neurite outgrowth. J Cell Biol. 1988 Aug;107(2):643–650. doi: 10.1083/jcb.107.2.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brugg B., Reddy D., Matus A. Attenuation of microtubule-associated protein 1B expression by antisense oligodeoxynucleotides inhibits initiation of neurite outgrowth. Neuroscience. 1993 Feb;52(3):489–496. doi: 10.1016/0306-4522(93)90401-z. [DOI] [PubMed] [Google Scholar]
  8. Bush M. S., Goold R. G., Moya F., Gordon-Weeks P. R. An analysis of an axonal gradient of phosphorylated MAP 1B in cultured rat sensory neurons. Eur J Neurosci. 1996 Feb;8(2):235–248. doi: 10.1111/j.1460-9568.1996.tb01208.x. [DOI] [PubMed] [Google Scholar]
  9. Bush M. S., Gordon-Weeks P. R. Distribution and expression of developmentally regulated phosphorylation epitopes on MAP 1B and neurofilament proteins in the developing rat spinal cord. J Neurocytol. 1994 Nov;23(11):682–698. doi: 10.1007/BF01181643. [DOI] [PubMed] [Google Scholar]
  10. Calvert R., Anderton B. H. A microtubule-associated protein (MAP1) which is expressed at elevated levels during development of the rat cerebellum. EMBO J. 1985 May;4(5):1171–1176. doi: 10.1002/j.1460-2075.1985.tb03756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carden M. J., Trojanowski J. Q., Schlaepfer W. W., Lee V. M. Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci. 1987 Nov;7(11):3489–3504. doi: 10.1523/JNEUROSCI.07-11-03489.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chiu F. C., Barnes E. A., Das K., Haley J., Socolow P., Macaluso F. P., Fant J. Characterization of a novel 66 kd subunit of mammalian neurofilaments. Neuron. 1989 May;2(5):1435–1445. doi: 10.1016/0896-6273(89)90189-x. [DOI] [PubMed] [Google Scholar]
  13. Coleman M. P., Anderton B. H. Phosphate-dependent monoclonal antibodies to neurofilaments and Alzheimer neurofibrillary tangles recognize a synthetic phosphopeptide. J Neurochem. 1990 May;54(5):1548–1555. doi: 10.1111/j.1471-4159.1990.tb01203.x. [DOI] [PubMed] [Google Scholar]
  14. DiTella M. C., Feiguin F., Carri N., Kosik K. S., Cáceres A. MAP-1B/TAU functional redundancy during laminin-enhanced axonal growth. J Cell Sci. 1996 Feb;109(Pt 2):467–477. doi: 10.1242/jcs.109.2.467. [DOI] [PubMed] [Google Scholar]
  15. Díaz-Nido J., Armas-Portela R., Avila J. Increase in cytoplasmic casein kinase II-type activity accompanies neurite outgrowth after DNA synthesis inhibition in NIA-103 neuroblastoma cells. J Neurochem. 1992 May;58(5):1820–1828. doi: 10.1111/j.1471-4159.1992.tb10058.x. [DOI] [PubMed] [Google Scholar]
  16. Díaz-Nido J., Serrano L., Hernández M. A., Avila J. Phosphorylation of microtubule proteins in rat brain at different developmental stages: comparison with that found in neuronal cultures. J Neurochem. 1990 Jan;54(1):211–222. doi: 10.1111/j.1471-4159.1990.tb13303.x. [DOI] [PubMed] [Google Scholar]
  17. Díaz-Nido J., Serrano L., Méndez E., Avila J. A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-1B during neuroblastoma cell differentiation. J Cell Biol. 1988 Jun;106(6):2057–2065. doi: 10.1083/jcb.106.6.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Edelmann W., Zervas M., Costello P., Roback L., Fischer I., Hammarback J. A., Cowan N., Davies P., Wainer B., Kucherlapati R. Neuronal abnormalities in microtubule-associated protein 1B mutant mice. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1270–1275. doi: 10.1073/pnas.93.3.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fischer I., Romano-Clarke G. Changes in microtubule-associated protein MAP1B phosphorylation during rat brain development. J Neurochem. 1990 Jul;55(1):328–333. doi: 10.1111/j.1471-4159.1990.tb08855.x. [DOI] [PubMed] [Google Scholar]
  20. Fliegner K. H., Kaplan M. P., Wood T. L., Pintar J. E., Liem R. K. Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J Comp Neurol. 1994 Apr 8;342(2):161–173. doi: 10.1002/cne.903420202. [DOI] [PubMed] [Google Scholar]
  21. Fujii T., Nakamura A., Ogoma Y., Kondo Y., Arai T. Selective purification of microtubule-associated proteins 1 and 2 from rat brain using poly(L-aspartic acid). Anal Biochem. 1990 Feb 1;184(2):268–273. doi: 10.1016/0003-2697(90)90679-4. [DOI] [PubMed] [Google Scholar]
  22. García Rocha M., Avila J. Characterization of microtubule-associated protein phosphoisoforms present in isolated growth cones. Brain Res Dev Brain Res. 1995 Oct 27;89(1):47–55. doi: 10.1016/0165-3806(95)00105-m. [DOI] [PubMed] [Google Scholar]
  23. Garner C. C., Garner A., Huber G., Kozak C., Matus A. Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and their differential expression in developing brain. J Neurochem. 1990 Jul;55(1):146–154. doi: 10.1111/j.1471-4159.1990.tb08832.x. [DOI] [PubMed] [Google Scholar]
  24. Goldstein M. E., Sternberger L. A., Sternberger N. H. Microheterogeneity ("neurotypy") of neurofilament proteins. Proc Natl Acad Sci U S A. 1983 May;80(10):3101–3105. doi: 10.1073/pnas.80.10.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Goldstein M. E., Sternberger N. H., Sternberger L. A. Developmental expression of neurotypy revealed by immunocytochemistry with monoclonal antibodies. J Neuroimmunol. 1982 Nov;3(3):203–217. doi: 10.1016/0165-5728(82)90023-6. [DOI] [PubMed] [Google Scholar]
  26. Gordon-Weeks P. R., Mansfield S. G., Alberto C., Johnstone M., Moya F. A phosphorylation epitope on MAP 1B that is transiently expressed in growing axons in the developing rat nervous system. Eur J Neurosci. 1993 Oct 1;5(10):1302–1311. doi: 10.1111/j.1460-9568.1993.tb00916.x. [DOI] [PubMed] [Google Scholar]
  27. Gordon-Weeks P. R. Organization of microtubules in axonal growth cones: a role for microtubule-associated protein MAP 1B. J Neurocytol. 1993 Sep;22(9):717–725. doi: 10.1007/BF01181317. [DOI] [PubMed] [Google Scholar]
  28. Greene L. A., Liem R. K., Shelanski M. L. Regulation of a high molecular weight microtubule-associated protein in PC12 cells by nerve growth factor. J Cell Biol. 1983 Jan;96(1):76–83. doi: 10.1083/jcb.96.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hasegawa M., Arai T., Ihara Y. Immunochemical evidence that fragments of phosphorylated MAP5 (MAP1B) are bound to neurofibrillary tangles in Alzheimer's disease. Neuron. 1990 Jun;4(6):909–918. doi: 10.1016/0896-6273(90)90144-5. [DOI] [PubMed] [Google Scholar]
  30. Haugh M. C., Probst A., Ulrich J., Kahn J., Anderton B. H. Alzheimer neurofibrillary tangles contain phosphorylated and hidden neurofilament epitopes. J Neurol Neurosurg Psychiatry. 1986 Nov;49(11):1213–1220. doi: 10.1136/jnnp.49.11.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hoshi M., Nishida E., Inagaki M., Gotoh Y., Sakai H. Activation of a serine/threonine kinase that phosphorylates microtubule-associated protein 1B in vitro by growth factors and phorbol esters in quiescent rat fibroblastic cells. Eur J Biochem. 1990 Oct 24;193(2):513–519. doi: 10.1111/j.1432-1033.1990.tb19366.x. [DOI] [PubMed] [Google Scholar]
  32. Kaplan M. P., Chin S. S., Fliegner K. H., Liem R. K. Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci. 1990 Aug;10(8):2735–2748. doi: 10.1523/JNEUROSCI.10-08-02735.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kirsch J., Littauer U. Z., Schmitt B., Prior P., Thomas L., Betz H. Neuraxin corresponds to a C-terminal fragment of microtubule-associated protein 5 (MAP5). FEBS Lett. 1990 Mar 26;262(2):259–262. doi: 10.1016/0014-5793(90)80205-w. [DOI] [PubMed] [Google Scholar]
  34. Ksiezak-Reding H., Dickson D. W., Davies P., Yen S. H. Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles. Proc Natl Acad Sci U S A. 1987 May;84(10):3410–3414. doi: 10.1073/pnas.84.10.3410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  36. Lee V. M., Carden M. J., Schlaepfer W. W., Trojanowski J. Q. Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci. 1987 Nov;7(11):3474–3488. doi: 10.1523/JNEUROSCI.07-11-03474.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lichtenberg-Kraag B., Mandelkow E. M., Biernat J., Steiner B., Schröter C., Gustke N., Meyer H. E., Mandelkow E. Phosphorylation-dependent epitopes of neurofilament antibodies on tau protein and relationship with Alzheimer tau. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5384–5388. doi: 10.1073/pnas.89.12.5384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lindwall G., Cole R. D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem. 1984 Apr 25;259(8):5301–5305. [PubMed] [Google Scholar]
  39. Loeb D. M., Tsao H., Cobb M. H., Greene L. A. NGF and other growth factors induce an association between ERK1 and the NGF receptor, gp140prototrk. Neuron. 1992 Dec;9(6):1053–1065. doi: 10.1016/0896-6273(92)90065-l. [DOI] [PubMed] [Google Scholar]
  40. Mansfield S. G., Diaz-Nido J., Gordon-Weeks P. R., Avila J. The distribution and phosphorylation of the microtubule-associated protein MAP 1B in growth cones. J Neurocytol. 1991 Dec;20(12):1007–1022. doi: 10.1007/BF01187918. [DOI] [PubMed] [Google Scholar]
  41. Miller C. C., Brion J. P., Calvert R., Chin T. K., Eagles P. A., Downes M. J., Flament-Durand J., Haugh M., Kahn J., Probst A. Alzheimer's paired helical filaments share epitopes with neurofilament side arms. EMBO J. 1986 Feb;5(2):269–276. doi: 10.1002/j.1460-2075.1986.tb04209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Murthy A. S., Flavin M. Microtubule assembly using the microtubule-associated protein MAP-2 prepared in defined states of phosphorylation with protein kinase and phosphatase. Eur J Biochem. 1983 Dec 1;137(1-2):37–46. doi: 10.1111/j.1432-1033.1983.tb07792.x. [DOI] [PubMed] [Google Scholar]
  43. Nukina N., Kosik K. S., Selkoe D. J. Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to crossreaction with tau protein. Proc Natl Acad Sci U S A. 1987 May;84(10):3415–3419. doi: 10.1073/pnas.84.10.3415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pedrotti B., Islam K. Purification of microtubule associated protein MAP1B from bovine brain: MAP1B binds to microtubules but not to microfilaments. Cell Motil Cytoskeleton. 1995;30(4):301–309. doi: 10.1002/cm.970300407. [DOI] [PubMed] [Google Scholar]
  45. Petrucci T. C., Morrow J. S. Synapsin I: an actin-bundling protein under phosphorylation control. J Cell Biol. 1987 Sep;105(3):1355–1363. doi: 10.1083/jcb.105.3.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Riederer B. M., Guadano-Ferraz A., Innocenti G. M. Difference in distribution of microtubule-associated proteins 5a and 5b during the development of cerebral cortex and corpus callosum in cats: dependence on phosphorylation. Brain Res Dev Brain Res. 1990 Nov 1;56(2):235–243. doi: 10.1016/0165-3806(90)90088-g. [DOI] [PubMed] [Google Scholar]
  47. Riederer B. M., Moya F., Calvert R. Phosphorylated MAP1b, alias MAP5 and MAP1x, is involved in axonal growth and neuronal mitosis. Neuroreport. 1993 Jun;4(6):771–774. doi: 10.1097/00001756-199306000-00044. [DOI] [PubMed] [Google Scholar]
  48. Riederer B., Cohen R., Matus A. MAP5: a novel brain microtubule-associated protein under strong developmental regulation. J Neurocytol. 1986 Dec;15(6):763–775. doi: 10.1007/BF01625193. [DOI] [PubMed] [Google Scholar]
  49. Rienitz A., Grenningloh G., Hermans-Borgmeyer I., Kirsch J., Littauer U. Z., Prior P., Gundelfinger E. D., Schmitt B., Betz H. Neuraxin, a novel putative structural protein of the rat central nervous system that is immunologically related to microtubule-associated protein 5. EMBO J. 1989 Oct;8(10):2879–2888. doi: 10.1002/j.1460-2075.1989.tb08436.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Safaei R., Fischer I. Cloning of a cDNA encoding MAP1B in rat brain: regulation of mRNA levels during development. J Neurochem. 1989 Jun;52(6):1871–1879. doi: 10.1111/j.1471-4159.1989.tb07270.x. [DOI] [PubMed] [Google Scholar]
  51. Sato-Yoshitake R., Shiomura Y., Miyasaka H., Hirokawa N. Microtubule-associated protein 1B: molecular structure, localization, and phosphorylation-dependent expression in developing neurons. Neuron. 1989 Aug;3(2):229–238. doi: 10.1016/0896-6273(89)90036-6. [DOI] [PubMed] [Google Scholar]
  52. Schoenfeld T. A., McKerracher L., Obar R., Vallee R. B. MAP 1A and MAP 1B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS. J Neurosci. 1989 May;9(5):1712–1730. doi: 10.1523/JNEUROSCI.09-05-01712.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Shaw G., Osborn M., Weber K. An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol. 1981 Dec;26(1):68–82. [PubMed] [Google Scholar]
  54. Sloan K. E., Stevenson J. A., Bigbee J. W. Qualitative and quantitative comparison of the distribution of phosphorylated and non-phosphorylated neurofilament epitopes within central and peripheral axons of adult hamster (Mesocricetus auratus). Cell Tissue Res. 1991 Feb;263(2):265–270. doi: 10.1007/BF00318768. [DOI] [PubMed] [Google Scholar]
  55. Sternberger L. A., Sternberger N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6126–6130. doi: 10.1073/pnas.80.19.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  57. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  58. Tsao H., Aletta J. M., Greene L. A. Nerve growth factor and fibroblast growth factor selectively activate a protein kinase that phosphorylates high molecular weight microtubule-associated proteins. Detection, partial purification, and characterization in PC12 cells. J Biol Chem. 1990 Sep 15;265(26):15471–15480. [PubMed] [Google Scholar]
  59. Tucker R. P., Binder L. I., Matus A. I. Neuronal microtubule-associated proteins in the embryonic avian spinal cord. J Comp Neurol. 1988 May 1;271(1):44–55. doi: 10.1002/cne.902710106. [DOI] [PubMed] [Google Scholar]
  60. Tucker R. P. The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res Brain Res Rev. 1990 May-Aug;15(2):101–120. doi: 10.1016/0165-0173(90)90013-e. [DOI] [PubMed] [Google Scholar]
  61. Ulloa L., Avila J., Díaz-Nido J. Heterogeneity in the phosphorylation of microtubule-associated protein MAP1B during rat brain development. J Neurochem. 1993 Sep;61(3):961–972. doi: 10.1111/j.1471-4159.1993.tb03609.x. [DOI] [PubMed] [Google Scholar]
  62. Ulloa L., Díaz-Nido J., Avila J. Depletion of casein kinase II by antisense oligonucleotide prevents neuritogenesis in neuroblastoma cells. EMBO J. 1993 Apr;12(4):1633–1640. doi: 10.1002/j.1460-2075.1993.tb05808.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Ulloa L., Díez-Guerra F. J., Avila J., Díaz-Nido J. Localization of differentially phosphorylated isoforms of microtubule-associated protein 1B in cultured rat hippocampal neurons. Neuroscience. 1994 Jul;61(2):211–223. doi: 10.1016/0306-4522(94)90225-9. [DOI] [PubMed] [Google Scholar]
  64. Viereck C., Matus A. The expression of phosphorylated and non-phosphorylated forms of MAP5 in the amphibian CNS. Brain Res. 1990 Feb 5;508(2):257–264. doi: 10.1016/0006-8993(90)90404-y. [DOI] [PubMed] [Google Scholar]
  65. Viereck C., Tucker R. P., Matus A. The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. J Neurosci. 1989 Oct;9(10):3547–3557. doi: 10.1523/JNEUROSCI.09-10-03547.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Way M., Pope B., Gooch J., Hawkins M., Weeds A. G. Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J. 1990 Dec;9(12):4103–4109. doi: 10.1002/j.1460-2075.1990.tb07632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zauner W., Kratz J., Staunton J., Feick P., Wiche G. Identification of two distinct microtubule binding domains on recombinant rat MAP 1B. Eur J Cell Biol. 1992 Feb;57(1):66–74. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES