Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1997 Aug;191(Pt 2):301–307. doi: 10.1046/j.1469-7580.1997.19120301.x

Role of glutamate in the regulation of the outgrowth and motility of neurites from mouse spinal cord neurons in culture

ALUN D OWEN *,* , MARGARET M BIRD *
PMCID: PMC1467682  PMID: 9306206

Abstract

The excitatory amino acid glutamate has been shown to be toxic to a number of neuronal cell types both in vitro and in vivo. It has also been shown to be capable of controlling the development of neurons grown in vitro. Using time-lapse video microscopy techniques the effects of glutamate on the rate of neurite outgrowth and growth cone motility were examined on cultured mouse spinal cord neurons. Concentrations in the range of 1 to 100 µ M caused a significant inhibition of neurite outgrowth and concentrations of 10 and 100 µ M significantly inhibited growth cone activity. In addition it was shown that the kainate/AMPA receptor antagonist (±)3-(2-carbvoxypiperazin-4-yl)-propyl-l-phosphonic acid, but not the NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione, was capable of blocking the inhibitory actions of glutamate on both outgrowth and motility. These results show that, at least in the culture system employed, glutamate might have a role in regulating neuronal development and function.

Keywords: Excitatory amino acids, growth cones

Full Text

The Full Text of this article is available as a PDF (629.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banker G. A., Cowan W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 1977 May 13;126(3):397–342. doi: 10.1016/0006-8993(77)90594-7. [DOI] [PubMed] [Google Scholar]
  2. Bray D., Gilbert D. Cytoskeletal elements in neurons. Annu Rev Neurosci. 1981;4:505–523. doi: 10.1146/annurev.ne.04.030181.002445. [DOI] [PubMed] [Google Scholar]
  3. Caceres A., Banker G., Steward O., Binder L., Payne M. MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res. 1984 Apr;315(2):314–318. doi: 10.1016/0165-3806(84)90167-6. [DOI] [PubMed] [Google Scholar]
  4. Choi D. W., Koh J. Y., Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988 Jan;8(1):185–196. doi: 10.1523/JNEUROSCI.08-01-00185.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foster A. C., Fagg G. E. Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. 1984 May;319(2):103–164. doi: 10.1016/0165-0173(84)90020-1. [DOI] [PubMed] [Google Scholar]
  6. Haydon P. G., McCobb D. P., Kater S. B. Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science. 1984 Nov 2;226(4674):561–564. doi: 10.1126/science.6093252. [DOI] [PubMed] [Google Scholar]
  7. Hugon J., Vallat J. M., Dumas M. Rôle du glutamate et de l'excitotoxicité dans les maladies neurologiques. Rev Neurol (Paris) 1996 Apr;152(4):239–248. [PubMed] [Google Scholar]
  8. Jansen K. L., Faull R. L., Dragunow M., Waldvogel H. Autoradiographic localisation of NMDA, quisqualate and kainic acid receptors in human spinal cord. Neurosci Lett. 1990 Jan 1;108(1-2):53–57. doi: 10.1016/0304-3940(90)90705-e. [DOI] [PubMed] [Google Scholar]
  9. Mattson M. P., Dou P., Kater S. B. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci. 1988 Jun;8(6):2087–2100. doi: 10.1523/JNEUROSCI.08-06-02087.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mattson M. P., Kater S. B. Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res. 1989 Jan 30;478(2):337–348. doi: 10.1016/0006-8993(89)91514-x. [DOI] [PubMed] [Google Scholar]
  11. Mattson M. P., Kater S. B. Isolated hippocampal neurons in cryopreserved long-term cultures: development of neuroarchitecture and sensitivity to NMDA. Int J Dev Neurosci. 1988;6(5):439–452. doi: 10.1016/0736-5748(88)90050-0. [DOI] [PubMed] [Google Scholar]
  12. Mattson M. P., Rychlik B., You J. S., Sisken J. E. Sensitivity of cultured human embryonic cerebral cortical neurons to excitatory amino acid-induced calcium influx and neurotoxicity. Brain Res. 1991 Feb 22;542(1):97–106. doi: 10.1016/0006-8993(91)91003-j. [DOI] [PubMed] [Google Scholar]
  13. Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990 Sep;11(9):379–387. doi: 10.1016/0165-6147(90)90184-a. [DOI] [PubMed] [Google Scholar]
  14. Monaghan D. T., Cotman C. W. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res. 1982 Dec 2;252(1):91–100. doi: 10.1016/0006-8993(82)90981-7. [DOI] [PubMed] [Google Scholar]
  15. Olney J. W., Farber N. B. NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology. 1995 Dec;13(4):335–345. doi: 10.1016/0893-133X(95)00079-S. [DOI] [PubMed] [Google Scholar]
  16. Owen A., Bird M. Acetylcholine as a regulator of neurite outgrowth and motility in cultured embryonic mouse spinal cord. Neuroreport. 1995 Nov 27;6(17):2269–2272. doi: 10.1097/00001756-199511270-00001. [DOI] [PubMed] [Google Scholar]
  17. Regan R. F., Choi D. W. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience. 1991;43(2-3):585–591. doi: 10.1016/0306-4522(91)90317-h. [DOI] [PubMed] [Google Scholar]
  18. Rothman S. M. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci. 1985 Jun;5(6):1483–1489. doi: 10.1523/JNEUROSCI.05-06-01483.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. van den Pol A. N., Obrietan K., Cao V., Trombley P. Q. Embryonic hypothalamic expression of functional glutamate receptors. Neuroscience. 1995 Jul;67(2):419–439. doi: 10.1016/0306-4522(95)96912-w. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES