Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jun 15;25(12):2522–2528. doi: 10.1093/nar/25.12.2522

The class II trans-activator CIITA interacts with the TBP-associated factor TAFII32.

J D Fontes 1, B Jiang 1, B M Peterlin 1
PMCID: PMC146770  PMID: 9171108

Abstract

The class II trans- activator (CIITA) is the main transcriptional co-activator for the expression of MHC class II proteins. Its N-terminal 125 amino acids function as an independent transcriptional activation domain. Analyses of the primary amino acid sequence of the activation domain predict the presence of three alpha-helices, each with a high proportion of acidic residues. Using site-directed mutagenesis, we found that two of these predicted alpha-helices are required for full transcriptional activation by CIITA. Moreover, a CIITA protein in which both functional alpha-helices have been deleted displays a dominant negative phenotype. This activation domain of CIITA interacts with the 32 kDa subunit of the general transcription complex TFIID, TAFII32. Decreased transcriptional activation by N-terminal deletions of CIITA is correlated directly with their reduced binding to TAFII32. We conclude that interactions between TAFII32 and CIITA are responsible for activation of class II genes.

Full Text

The Full Text of this article is available as a PDF (133.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdulkadir S. A., Ono S. J. How are class II MHC genes turned on and off? FASEB J. 1995 Nov;9(14):1429–1435. doi: 10.1096/fasebj.9.14.7589984. [DOI] [PubMed] [Google Scholar]
  2. Berger S. L., Cress W. D., Cress A., Triezenberg S. J., Guarente L. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell. 1990 Jun 29;61(7):1199–1208. doi: 10.1016/0092-8674(90)90684-7. [DOI] [PubMed] [Google Scholar]
  3. Blair W. S., Bogerd H. P., Madore S. J., Cullen B. R. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol Cell Biol. 1994 Nov;14(11):7226–7234. doi: 10.1128/mcb.14.11.7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breiding D. E., Grossel M. J., Androphy E. J. Genetic analysis of the bovine papillomavirus E2 transcriptional activation domain. Virology. 1996 Jul 1;221(1):34–43. doi: 10.1006/viro.1996.0350. [DOI] [PubMed] [Google Scholar]
  5. Chang C. H., Flavell R. A. Class II transactivator regulates the expression of multiple genes involved in antigen presentation. J Exp Med. 1995 Feb 1;181(2):765–767. doi: 10.1084/jem.181.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang C. H., Fontes J. D., Peterlin M., Flavell R. A. Class II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes. J Exp Med. 1994 Oct 1;180(4):1367–1374. doi: 10.1084/jem.180.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang C. H., Guerder S., Hong S. C., van Ewijk W., Flavell R. A. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity. 1996 Feb;4(2):167–178. doi: 10.1016/s1074-7613(00)80681-0. [DOI] [PubMed] [Google Scholar]
  8. Cress W. D., Triezenberg S. J. Critical structural elements of the VP16 transcriptional activation domain. Science. 1991 Jan 4;251(4989):87–90. doi: 10.1126/science.1846049. [DOI] [PubMed] [Google Scholar]
  9. Damania B., Alwine J. C. TAF-like function of SV40 large T antigen. Genes Dev. 1996 Jun 1;10(11):1369–1381. doi: 10.1101/gad.10.11.1369. [DOI] [PubMed] [Google Scholar]
  10. Dikstein R., Zhou S., Tjian R. Human TAFII 105 is a cell type-specific TFIID subunit related to hTAFII130. Cell. 1996 Oct 4;87(1):137–146. doi: 10.1016/s0092-8674(00)81330-6. [DOI] [PubMed] [Google Scholar]
  11. Drysdale C. M., Dueñas E., Jackson B. M., Reusser U., Braus G. H., Hinnebusch A. G. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol Cell Biol. 1995 Mar;15(3):1220–1233. doi: 10.1128/mcb.15.3.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fontes J. D., Jabrane-Ferrat N., Toth C. R., Peterlin B. M. Binding and cooperative interactions between two B cell-specific transcriptional coactivators. J Exp Med. 1996 Jun 1;183(6):2517–2521. doi: 10.1084/jem.183.6.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giniger E., Ptashne M. Transcription in yeast activated by a putative amphipathic alpha helix linked to a DNA binding unit. Nature. 1987 Dec 17;330(6149):670–672. doi: 10.1038/330670a0. [DOI] [PubMed] [Google Scholar]
  14. Glimcher L. H., Kara C. J. Sequences and factors: a guide to MHC class-II transcription. Annu Rev Immunol. 1992;10:13–49. doi: 10.1146/annurev.iy.10.040192.000305. [DOI] [PubMed] [Google Scholar]
  15. Gstaiger M., Knoepfel L., Georgiev O., Schaffner W., Hovens C. M. A B-cell coactivator of octamer-binding transcription factors. Nature. 1995 Jan 26;373(6512):360–362. doi: 10.1038/373360a0. [DOI] [PubMed] [Google Scholar]
  16. Guardiola J., Maffei A. Control of MHC class II gene expression in autoimmune, infectious, and neoplastic diseases. Crit Rev Immunol. 1993;13(3-4):247–268. [PubMed] [Google Scholar]
  17. Haviv I., Vaizel D., Shaul Y. pX, the HBV-encoded coactivator, interacts with components of the transcription machinery and stimulates transcription in a TAF-independent manner. EMBO J. 1996 Jul 1;15(13):3413–3420. [PMC free article] [PubMed] [Google Scholar]
  18. Herrmann C. H., Rice A. P. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J Virol. 1995 Mar;69(3):1612–1620. doi: 10.1128/jvi.69.3.1612-1620.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hope I. A., Mahadevan S., Struhl K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature. 1988 Jun 16;333(6174):635–640. doi: 10.1038/333635a0. [DOI] [PubMed] [Google Scholar]
  20. Jabrane-Ferrat N., Fontes J. D., Boss J. M., Peterlin B. M. Complex architecture of major histocompatibility complex class II promoters: reiterated motifs and conserved protein-protein interactions. Mol Cell Biol. 1996 Sep;16(9):4683–4690. doi: 10.1128/mcb.16.9.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jabrane-Ferrat N., Peterlin B. M. Ets-1 activates the DRA promoter in B cells. Mol Cell Biol. 1994 Nov;14(11):7314–7321. doi: 10.1128/mcb.14.11.7314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kern I., Steimle V., Siegrist C. A., Mach B. The two novel MHC class II transactivators RFX5 and CIITA both control expression of HLA-DM genes. Int Immunol. 1995 Aug;7(8):1295–1299. doi: 10.1093/intimm/7.8.1295. [DOI] [PubMed] [Google Scholar]
  23. Klemm R. D., Goodrich J. A., Zhou S., Tjian R. Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5788–5792. doi: 10.1073/pnas.92.13.5788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leuther K. K., Salmeron J. M., Johnston S. A. Genetic evidence that an activation domain of GAL4 does not require acidity and may form a beta sheet. Cell. 1993 Feb 26;72(4):575–585. doi: 10.1016/0092-8674(93)90076-3. [DOI] [PubMed] [Google Scholar]
  25. Lillie J. W., Green M. R. Transcription activation by the adenovirus E1a protein. Nature. 1989 Mar 2;338(6210):39–44. doi: 10.1038/338039a0. [DOI] [PubMed] [Google Scholar]
  26. Lin J., Chen J., Elenbaas B., Levine A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 1994 May 15;8(10):1235–1246. doi: 10.1101/gad.8.10.1235. [DOI] [PubMed] [Google Scholar]
  27. Luo Y., Roeder R. G. Cloning, functional characterization, and mechanism of action of the B-cell-specific transcriptional coactivator OCA-B. Mol Cell Biol. 1995 Aug;15(8):4115–4124. doi: 10.1128/mcb.15.8.4115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ma J., Ptashne M. A new class of yeast transcriptional activators. Cell. 1987 Oct 9;51(1):113–119. doi: 10.1016/0092-8674(87)90015-8. [DOI] [PubMed] [Google Scholar]
  29. Ma J., Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell. 1987 Mar 13;48(5):847–853. doi: 10.1016/0092-8674(87)90081-x. [DOI] [PubMed] [Google Scholar]
  30. Massari M. E., Jennings P. A., Murre C. The AD1 transactivation domain of E2A contains a highly conserved helix which is required for its activity in both Saccharomyces cerevisiae and mammalian cells. Mol Cell Biol. 1996 Jan;16(1):121–129. doi: 10.1128/mcb.16.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moreno C. S., Emery P., West J. E., Durand B., Reith W., Mach B., Boss J. M. Purified X2 binding protein (X2BP) cooperatively binds the class II MHC X box region in the presence of purified RFX, the X box factor deficient in the bare lymphocyte syndrome. J Immunol. 1995 Nov 1;155(9):4313–4321. [PubMed] [Google Scholar]
  32. Parada C. A., Yoon J. B., Roeder R. G. A novel LBP-1-mediated restriction of HIV-1 transcription at the level of elongation in vitro. J Biol Chem. 1995 Feb 3;270(5):2274–2283. doi: 10.1074/jbc.270.5.2274. [DOI] [PubMed] [Google Scholar]
  33. Reith W., Siegrist C. A., Durand B., Barras E., Mach B. Function of major histocompatibility complex class II promoters requires cooperative binding between factors RFX and NF-Y. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):554–558. doi: 10.1073/pnas.91.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reith W., Steimle V., Mach B. Molecular defects in the bare lymphocyte syndrome and regulation of MHC class II genes. Immunol Today. 1995 Nov;16(11):539–546. doi: 10.1016/0167-5699(95)80048-4. [DOI] [PubMed] [Google Scholar]
  35. Riley J. L., Westerheide S. D., Price J. A., Brown J. A., Boss J. M. Activation of class II MHC genes requires both the X box region and the class II transactivator (CIITA). Immunity. 1995 May;2(5):533–543. doi: 10.1016/1074-7613(95)90033-0. [DOI] [PubMed] [Google Scholar]
  36. Sadowski I., Ptashne M. A vector for expressing GAL4(1-147) fusions in mammalian cells. Nucleic Acids Res. 1989 Sep 25;17(18):7539–7539. doi: 10.1093/nar/17.18.7539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sartoris S., Accolla R. S. Transcriptional regulation of MHC class II genes. Int J Clin Lab Res. 1995;25(2):71–78. doi: 10.1007/BF02592360. [DOI] [PubMed] [Google Scholar]
  38. Shapiro D. J., Sharp P. A., Wahli W. W., Keller M. J. A high-efficiency HeLa cell nuclear transcription extract. DNA. 1988 Jan-Feb;7(1):47–55. doi: 10.1089/dna.1988.7.47. [DOI] [PubMed] [Google Scholar]
  39. Silacci P., Mottet A., Steimle V., Reith W., Mach B. Developmental extinction of major histocompatibility complex class II gene expression in plasmocytes is mediated by silencing of the transactivator gene CIITA. J Exp Med. 1994 Oct 1;180(4):1329–1336. doi: 10.1084/jem.180.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Steimle V., Durand B., Barras E., Zufferey M., Hadam M. R., Mach B., Reith W. A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev. 1995 May 1;9(9):1021–1032. doi: 10.1101/gad.9.9.1021. [DOI] [PubMed] [Google Scholar]
  41. Steimle V., Otten L. A., Zufferey M., Mach B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell. 1993 Oct 8;75(1):135–146. [PubMed] [Google Scholar]
  42. Steimle V., Siegrist C. A., Mottet A., Lisowska-Grospierre B., Mach B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science. 1994 Jul 1;265(5168):106–109. doi: 10.1126/science.8016643. [DOI] [PubMed] [Google Scholar]
  43. Strubin M., Newell J. W., Matthias P. OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell. 1995 Feb 10;80(3):497–506. doi: 10.1016/0092-8674(95)90500-6. [DOI] [PubMed] [Google Scholar]
  44. Ting J. P., Baldwin A. S. Regulation of MHC gene expression. Curr Opin Immunol. 1993 Feb;5(1):8–16. doi: 10.1016/0952-7915(93)90074-3. [DOI] [PubMed] [Google Scholar]
  45. Trautwein C., Walker D. L., Plümpe J., Manns M. P. Transactivation of LAP/NF-IL6 is mediated by an acidic domain in the N-terminal part of the protein. J Biol Chem. 1995 Jun 23;270(25):15130–15136. doi: 10.1074/jbc.270.25.15130. [DOI] [PubMed] [Google Scholar]
  46. Tsang S. Y., Nakanishi M., Peterlin B. M. Mutational analysis of the DRA promoter: cis-acting sequences and trans-acting factors. Mol Cell Biol. 1990 Feb;10(2):711–719. doi: 10.1128/mcb.10.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Van Hoy M., Leuther K. K., Kodadek T., Johnston S. A. The acidic activation domains of the GCN4 and GAL4 proteins are not alpha helical but form beta sheets. Cell. 1993 Feb 26;72(4):587–594. doi: 10.1016/0092-8674(93)90077-4. [DOI] [PubMed] [Google Scholar]
  48. Wright K. L., Vilen B. J., Itoh-Lindstrom Y., Moore T. L., Li G., Criscitiello M., Cogswell P., Clarke J. B., Ting J. P. CCAAT box binding protein NF-Y facilitates in vivo recruitment of upstream DNA binding transcription factors. EMBO J. 1994 Sep 1;13(17):4042–4053. doi: 10.1002/j.1460-2075.1994.tb06721.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhou H., Glimcher L. H. Human MHC class II gene transcription directed by the carboxyl terminus of CIITA, one of the defective genes in type II MHC combined immune deficiency. Immunity. 1995 May;2(5):545–553. doi: 10.1016/1074-7613(95)90034-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES