Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1997 Nov;191(Pt 4):493–499. doi: 10.1046/j.1469-7580.1997.19140493.x

Growth factor action in neural crest cell diversification

MAYA SIEBER-BLUM *,, JIAN-MIN ZHANG *,*
PMCID: PMC1467716  PMID: 9449068

Abstract

At the onset of their migration into the embryo, many neural crest cells are pluripotent in the sense that they have the capacity to generate progeny that consist of more than one cell type. More recently, we have found that there are pluripotent neural crest cell-derived cells even at sites of terminal differentiation. These findings support the notion that cues originating from the microenvironment, at least in part, direct neural crest cell type specification. Based on the rationale that growth factors that are known to support survival of neural crest cell derivatives may have additional functions in progenitor cell development, we have examined the action of pertinent growth factors. Trophic, mitogenic, antiproliferative and differentiation promoting activities were found. Stem cell factor (SCF) is trophic for pluripotent neural crest cells. Contrary to expectation, SCF plus a neurotrophin, rather than SCF alone, is trophic for committed melanogenic cells. Basic fibroblast growth factor (bFGF) is mitogenic both for pluripotent cells and committed melanogenic cells. However, the cells become dependent on another factor for survival. Whereas any neurotrophin tested can rescue bFGF-activated pluripotent neural crest cells, the factor that rescues melanogenic cells remains to be determined. Transforming growth factor β1 (TGF-β1) is a powerful antimitotic signal for all neural crest cells that overrides the bFGF/neurotrophin proliferative signal. Furthermore, SCF promotes differentiation of neural crest cells into cells of the sensory neuron lineage. Neurotrophin-3 (NT-3) specifically promotes high affinity uptake of norepinephrine by neural crest cells and is thus thought to play a critical role in the differentiation of sympathetic neuroblasts. In summary, our data indicate that neurotrophins and other pertinent growth factors affect survival, proliferation and differentiation of neural crest cells at multiple levels and in different lineages. Moreover, our findings emphasise the importance of the concerted action of combinations of growth factors, rather than of individual factors.

Keywords: Neurotrophins, stem cell factor, fibroblast growth factor, transforming growth factor beta, norepinephrine transporter

Full Text

The Full Text of this article is available as a PDF (243.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELROD J. THE METABOLISM, STORAGE, AND RELEASE OF CATECHOLAMINES. Recent Prog Horm Res. 1965;21:597–622. [PubMed] [Google Scholar]
  2. Amara S. G., Kuhar M. J. Neurotransmitter transporters: recent progress. Annu Rev Neurosci. 1993;16:73–93. doi: 10.1146/annurev.ne.16.030193.000445. [DOI] [PubMed] [Google Scholar]
  3. Anderson D. M., Lyman S. D., Baird A., Wignall J. M., Eisenman J., Rauch C., March C. J., Boswell H. S., Gimpel S. D., Cosman D. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell. 1990 Oct 5;63(1):235–243. doi: 10.1016/0092-8674(90)90304-w. [DOI] [PubMed] [Google Scholar]
  4. Artinger K. B., Bronner-Fraser M. Partial restriction in the developmental potential of late emigrating avian neural crest cells. Dev Biol. 1992 Jan;149(1):149–157. doi: 10.1016/0012-1606(92)90271-h. [DOI] [PubMed] [Google Scholar]
  5. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol. 1994 Nov;25(11):1386–1403. doi: 10.1002/neu.480251107. [DOI] [PubMed] [Google Scholar]
  6. Baroffio A., Dupin E., Le Douarin N. M. Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5325–5329. doi: 10.1073/pnas.85.14.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blakely R. D., De Felice L. J., Hartzell H. C. Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol. 1994 Nov;196:263–281. doi: 10.1242/jeb.196.1.263. [DOI] [PubMed] [Google Scholar]
  8. Brauer P. R., Yee J. A. Cranial neural crest cells synthesize and secrete a latent form of transforming growth factor beta that can be activated by neural crest cell proteolysis. Dev Biol. 1993 Jan;155(1):281–285. doi: 10.1006/dbio.1993.1026. [DOI] [PubMed] [Google Scholar]
  9. Bronner-Fraser M., Fraser S. E. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature. 1988 Sep 8;335(6186):161–164. doi: 10.1038/335161a0. [DOI] [PubMed] [Google Scholar]
  10. Carnahan J. F., Patel D. R., Miller J. A. Stem cell factor is a neurotrophic factor for neural crest-derived chick sensory neurons. J Neurosci. 1994 Mar;14(3 Pt 2):1433–1440. doi: 10.1523/JNEUROSCI.14-03-01433.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chabot B., Stephenson D. A., Chapman V. M., Besmer P., Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988 Sep 1;335(6185):88–89. doi: 10.1038/335088a0. [DOI] [PubMed] [Google Scholar]
  12. Chao M. V. Ceramide: a potential second messenger in the nervous system. Mol Cell Neurosci. 1995 Apr;6(2):91–96. doi: 10.1006/mcne.1995.1009. [DOI] [PubMed] [Google Scholar]
  13. Copeland N. G., Gilbert D. J., Cho B. C., Donovan P. J., Jenkins N. A., Cosman D., Anderson D., Lyman S. D., Williams D. E. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell. 1990 Oct 5;63(1):175–183. doi: 10.1016/0092-8674(90)90298-s. [DOI] [PubMed] [Google Scholar]
  14. Duff R. S., Langtimm C. J., Richardson M. K., Sieber-Blum M. In vitro clonal analysis of progenitor cell patterns in dorsal root and sympathetic ganglia of the quail embryo. Dev Biol. 1991 Oct;147(2):451–459. doi: 10.1016/0012-1606(91)90303-k. [DOI] [PubMed] [Google Scholar]
  15. Erickson C. A., Isseroff R. R. Plasminogen activator activity is associated with neural crest cell motility in tissue culture. J Exp Zool. 1989 Aug;251(2):123–133. doi: 10.1002/jez.1402510203. [DOI] [PubMed] [Google Scholar]
  16. Gingras J. L., O'Donnell K. J., Hume R. F. Maternal cocaine addiction and fetal behavioral state. I: A human model for the study of sudden infant death syndrome. Med Hypotheses. 1990 Dec;33(4):227–230. doi: 10.1016/0306-9877(90)90131-w. [DOI] [PubMed] [Google Scholar]
  17. Gingras J. L., Weese-Mayer D. Maternal cocaine addiction. II: An animal model for the study of brainstem mechanisms operative in sudden infant death syndrome. Med Hypotheses. 1990 Dec;33(4):231–234. doi: 10.1016/0306-9877(90)90132-x. [DOI] [PubMed] [Google Scholar]
  18. Hill R. M., Tennyson L. M. Maternal drug therapy: effect on fetal and neonatal growth and neurobehavior. Neurotoxicology. 1986 Summer;7(2):121–139. [PubMed] [Google Scholar]
  19. Huang E., Nocka K., Beier D. R., Chu T. Y., Buck J., Lahm H. W., Wellner D., Leder P., Besmer P. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990 Oct 5;63(1):225–233. doi: 10.1016/0092-8674(90)90303-v. [DOI] [PubMed] [Google Scholar]
  20. Ito K., Morita T., Sieber-Blum M. In vitro clonal analysis of mouse neural crest development. Dev Biol. 1993 Jun;157(2):517–525. doi: 10.1006/dbio.1993.1154. [DOI] [PubMed] [Google Scholar]
  21. Ito K., Sieber-Blum M. In vitro clonal analysis of quail cardiac neural crest development. Dev Biol. 1991 Nov;148(1):95–106. doi: 10.1016/0012-1606(91)90320-3. [DOI] [PubMed] [Google Scholar]
  22. Ito K., Sieber-Blum M. Pluripotent and developmentally restricted neural-crest-derived cells in posterior visceral arches. Dev Biol. 1993 Mar;156(1):191–200. doi: 10.1006/dbio.1993.1069. [DOI] [PubMed] [Google Scholar]
  23. Keshet E., Lyman S. D., Williams D. E., Anderson D. M., Jenkins N. A., Copeland N. G., Parada L. F. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J. 1991 Sep;10(9):2425–2435. doi: 10.1002/j.1460-2075.1991.tb07782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lahav R., Lecoin L., Ziller C., Nataf V., Carnahan J. F., Martin F. H., Le Douarin N. M. Effect of the Steel gene product on melanogenesis in avian neural crest cell cultures. Differentiation. 1994 Dec;58(2):133–139. doi: 10.1046/j.1432-0436.1995.5820133.x. [DOI] [PubMed] [Google Scholar]
  25. Lamballe F., Klein R., Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. 1991 Sep 6;66(5):967–979. doi: 10.1016/0092-8674(91)90442-2. [DOI] [PubMed] [Google Scholar]
  26. Langtimm-Sedlak C. J., Schroeder B., Saskowski J. L., Carnahan J. F., Sieber-Blum M. Multiple actions of stem cell factor in neural crest cell differentiation in vitro. Dev Biol. 1996 Mar 15;174(2):345–359. doi: 10.1006/dbio.1996.0079. [DOI] [PubMed] [Google Scholar]
  27. Le Lievre C. S., Schweizer G. G., Ziller C. M., Le Douarin N. M. Restrictions of developmental capabilities in neural crest cell derivatives as tested by in vivo transplantation experiments. Dev Biol. 1980 Jun 15;77(2):362–378. doi: 10.1016/0012-1606(80)90481-9. [DOI] [PubMed] [Google Scholar]
  28. Maisonpierre P. C., Belluscio L., Squinto S., Ip N. Y., Furth M. E., Lindsay R. M., Yancopoulos G. D. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990 Mar 23;247(4949 Pt 1):1446–1451. doi: 10.1126/science.247.4949.1446. [DOI] [PubMed] [Google Scholar]
  29. Marusich M. F., Weston J. A. Identification of early neurogenic cells in the neural crest lineage. Dev Biol. 1992 Feb;149(2):295–306. doi: 10.1016/0012-1606(92)90285-o. [DOI] [PubMed] [Google Scholar]
  30. Matsui Y., Zsebo K. M., Hogan B. L. Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature. 1990 Oct 18;347(6294):667–669. doi: 10.1038/347667a0. [DOI] [PubMed] [Google Scholar]
  31. Morrison-Graham K., West-Johnsrud L., Weston J. A. Extracellular matrix from normal but not Steel mutant mice enhances melanogenesis in cultured mouse neural crest cells. Dev Biol. 1990 Jun;139(2):299–307. doi: 10.1016/0012-1606(90)90299-x. [DOI] [PubMed] [Google Scholar]
  32. Morrison-Graham K., Weston J. A. Transient steel factor dependence by neural crest-derived melanocyte precursors. Dev Biol. 1993 Sep;159(1):346–352. doi: 10.1006/dbio.1993.1246. [DOI] [PubMed] [Google Scholar]
  33. Motro B., van der Kooy D., Rossant J., Reith A., Bernstein A. Contiguous patterns of c-kit and steel expression: analysis of mutations at the W and Sl loci. Development. 1991 Dec;113(4):1207–1221. doi: 10.1242/dev.113.4.1207. [DOI] [PubMed] [Google Scholar]
  34. Murphy M., Reid K., Williams D. E., Lyman S. D., Bartlett P. F. Steel factor is required for maintenance, but not differentiation, of melanocyte precursors in the neural crest. Dev Biol. 1992 Oct;153(2):396–401. doi: 10.1016/0012-1606(92)90124-y. [DOI] [PubMed] [Google Scholar]
  35. Nishikawa S., Kusakabe M., Yoshinaga K., Ogawa M., Hayashi S., Kunisada T., Era T., Sakakura T., Nishikawa S. In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: two distinct waves of c-kit-dependency during melanocyte development. EMBO J. 1991 Aug;10(8):2111–2118. doi: 10.1002/j.1460-2075.1991.tb07744.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  37. Orr-Urtreger A., Avivi A., Zimmer Y., Givol D., Yarden Y., Lonai P. Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development. 1990 Aug;109(4):911–923. doi: 10.1242/dev.109.4.911. [DOI] [PubMed] [Google Scholar]
  38. Pacholczyk T., Blakely R. D., Amara S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350–354. doi: 10.1038/350350a0. [DOI] [PubMed] [Google Scholar]
  39. Pinco O., Carmeli C., Rosenthal A., Kalcheim C. Neurotrophin-3 affects proliferation and differentiation of distinct neural crest cells and is present in the early neural tube of avian embryos. J Neurobiol. 1993 Dec;24(12):1626–1641. doi: 10.1002/neu.480241207. [DOI] [PubMed] [Google Scholar]
  40. Ponting I. L., Dexter T. M. The role of colony stimulating factors, interleukin 1 and stromal extracellular matrix in the regulation of stem cell development. Behring Inst Mitt. 1988 Aug;(83):48–55. [PubMed] [Google Scholar]
  41. Richardson M. K., Sieber-Blum M. Pluripotent neural crest cells in the developing skin of the quail embryo. Dev Biol. 1993 Jun;157(2):348–358. doi: 10.1006/dbio.1993.1140. [DOI] [PubMed] [Google Scholar]
  42. Rothman T. P., Gershon M. D., Holtzer H. The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors. Dev Biol. 1978 Aug;65(2):322–341. doi: 10.1016/0012-1606(78)90030-1. [DOI] [PubMed] [Google Scholar]
  43. Scarisbrick I. A., Jones E. G., Isackson P. J. Coexpression of mRNAs for NGF, BDNF, and NT-3 in the cardiovascular system of the pre- and postnatal rat. J Neurosci. 1993 Mar;13(3):875–893. doi: 10.1523/JNEUROSCI.13-03-00875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sieber-Blum M., Chokshi H. R. In vitro proliferation and terminal differentiation of quail neural crest cells in a defined culture medium. Exp Cell Res. 1985 May;158(1):267–272. doi: 10.1016/0014-4827(85)90450-1. [DOI] [PubMed] [Google Scholar]
  45. Sieber-Blum M., Cohen A. M. Clonal analysis of quail neural crest cells: they are pluripotent and differentiate in vitro in the absence of noncrest cells. Dev Biol. 1980 Nov;80(1):96–106. doi: 10.1016/0012-1606(80)90501-1. [DOI] [PubMed] [Google Scholar]
  46. Sieber-Blum M. Commitment of neural crest cells to the sensory neuron lineage. Science. 1989 Mar 24;243(4898):1608–1611. doi: 10.1126/science.2564699. [DOI] [PubMed] [Google Scholar]
  47. Sieber-Blum M. Inhibition of the adrenergic phenotype in cultured neural crest cells by norepinephrine uptake inhibitors. Dev Biol. 1989 Dec;136(2):372–380. doi: 10.1016/0012-1606(89)90263-7. [DOI] [PubMed] [Google Scholar]
  48. Sieber-Blum M., Ito K., Richardson M. K., Langtimm C. J., Duff R. S. Distribution of pluripotent neural crest cells in the embryo and the role of brain-derived neurotrophic factor in the commitment to the primary sensory neuron lineage. J Neurobiol. 1993 Feb;24(2):173–184. doi: 10.1002/neu.480240205. [DOI] [PubMed] [Google Scholar]
  49. Sieber-Blum M. Role of the neurotrophic factors BDNF and NGF in the commitment of pluripotent neural crest cells. Neuron. 1991 Jun;6(6):949–955. doi: 10.1016/0896-6273(91)90235-r. [DOI] [PubMed] [Google Scholar]
  50. Sieber-Blum M. SSEA-1 is a specific marker for the spinal sensory neuron lineage in the quail embryo and in neural crest cell cultures. Dev Biol. 1989 Aug;134(2):362–375. doi: 10.1016/0012-1606(89)90108-5. [DOI] [PubMed] [Google Scholar]
  51. Steel K. P., Davidson D. R., Jackson I. J. TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development. 1992 Aug;115(4):1111–1119. doi: 10.1242/dev.115.4.1111. [DOI] [PubMed] [Google Scholar]
  52. Strudel G., Recasens M., Mandel P. Identification de catécholamines et de sérotonine dans les chordes d'embryons de poulet. C R Acad Sci Hebd Seances Acad Sci D. 1977 Mar 14;284(11):967–969. [PubMed] [Google Scholar]
  53. Tessarollo L., Tsoulfas P., Martin-Zanca D., Gilbert D. J., Jenkins N. A., Copeland N. G., Parada L. F. trkC, a receptor for neurotrophin-3, is widely expressed in the developing nervous system and in non-neuronal tissues. Development. 1993 Jun;118(2):463–475. doi: 10.1242/dev.118.2.463. [DOI] [PubMed] [Google Scholar]
  54. Valinsky J. E., Le Douarin N. M. Production of plasminogen activator by migrating cephalic neural crest cells. EMBO J. 1985 Jun;4(6):1403–1406. doi: 10.1002/j.1460-2075.1985.tb03793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Weston J. A. The migration and differentiation of neural crest cells. Adv Morphog. 1970;8:41–114. doi: 10.1016/b978-0-12-028608-9.50006-5. [DOI] [PubMed] [Google Scholar]
  56. Yao L., Zhang D., Bernd P. The onset of neurotrophin and trk mRNA expression in early embryonic tissues of the quail. Dev Biol. 1994 Oct;165(2):727–730. doi: 10.1006/dbio.1994.1288. [DOI] [PubMed] [Google Scholar]
  57. Zhang D., Yao L., Bernd P. Expression of trk and neurotrophin mRNA in dorsal root and sympathetic ganglia of the quail during development. J Neurobiol. 1994 Dec;25(12):1517–1532. doi: 10.1002/neu.480251205. [DOI] [PubMed] [Google Scholar]
  58. Zhang J. M., Dix J., Langtimm-Sedlak C. J., Trusk T., Schroeder B., Hoffmann R., Strosberg A. D., Winslow J. W., Sieber-Blum M. Neurotrophin-3- and norepinephrine-mediated adrenergic differentiation and the inhibitory action of desipramine and cocaine. J Neurobiol. 1997 Mar;32(3):262–280. [PubMed] [Google Scholar]
  59. Zhang J. M., Hoffmann R., Sieber-Blum M. Mitogenic and anti-proliferative signals for neural crest cells and the neurogenic action of TGF-beta1. Dev Dyn. 1997 Mar;208(3):375–386. doi: 10.1002/(SICI)1097-0177(199703)208:3<375::AID-AJA8>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  60. Zhang J. M., Sieber-Blum M. Characterization of the norepinephrine uptake system and the role of norepinephrine in the expression of the adrenergic phenotype by quail neural crest cells in clonal culture. Brain Res. 1992 Jan 20;570(1-2):251–258. doi: 10.1016/0006-8993(92)90588-z. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES