Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Feb;192(Pt 2):223–231. doi: 10.1046/j.1469-7580.1998.19220223.x

Immunofluorescent localisation of tumour necrosis factor-α receptors on the popliteal lymph node and the surrounding adipose tissue following a simulated immune challenge

HILARY A MacQUEEN 1,, CAROLINE M POND 1
PMCID: PMC1467756  PMID: 9643423

Abstract

We used immunohistochemical techniques to demonstrate the distribution of receptors for the cytokine tumour necrosis factor-α on the popliteal lymph node and the adipose tissue surrounding it for 5 d following a simulated immune challenge to one hind leg in the rat. We found different patterns of expression of receptors on adipocytes surrounding a lymph node to a distance of about 1 mm, and on those more remote from the node. Sites recognised by an antibody to type I tumour necrosis factor receptors appeared on the challenged node and the adipocytes surrounding it within 30 min of an injection of bacterial lipopolysaccharide, but appeared on adipocytes surrounding the unchallenged popliteal node only 24 h later. Adipocytes distant from the node, both within the same depot and in the contralateral depot, showed no response. Sites recognised by an antibody to type II tumour necrosis factor receptors were present at all times on lymph nodes and the adipocytes close to them, but appeared on more distant adipocytes only 24 h after immune challenge, in both challenged and unchallenged legs. These data support the proposal, based on in vitro studies, that the adipose tissue surrounding major lymph nodes is specialised to respond to cytokines derived from lymphoid cells, and participates in the immune responses of the adjacent node.

Keywords: Adipocytes, lymphoid cells, immune response, cytokines

Full Text

The Full Text of this article is available as a PDF (871.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Yamauchi K., Kimura S. 75- but not 55-kDa tumor necrosis factor receptor is active in the homotypic aggregation and proliferation of human lymphokine-activated T killer (T-LAK) cells in vitro. J Leukoc Biol. 1995 Mar;57(3):462–468. doi: 10.1002/jlb.57.3.462. [DOI] [PubMed] [Google Scholar]
  2. Aggarwal B. B., Natarajan K. Tumor necrosis factors: developments during the last decade. Eur Cytokine Netw. 1996 Apr-Jun;7(2):93–124. [PubMed] [Google Scholar]
  3. Carter A., Haddad N., Draxler I., Israeli E., Raz B., Rowe J. M. Expression and role in growth regulation of tumour necrosis factor receptors p55 and p75 in acute myeloblastic leukaemia cells. Br J Haematol. 1996 Jan;92(1):116–126. doi: 10.1046/j.1365-2141.1996.272806.x. [DOI] [PubMed] [Google Scholar]
  4. De clercq L., Genart C., Boone C., Remacle C. Effects of acute or chronic administration of tumor necrosis factor on rat adipose tissue development. J Anim Sci. 1996 Nov;74(11):2745–2751. doi: 10.2527/1996.74112745x. [DOI] [PubMed] [Google Scholar]
  5. Ferrante J. V., Huang Z. H., Nandoskar M., Hii C. S., Robinson B. S., Rathjen D. A., Poulos A., Morris C. P., Ferrante A. Altered responses of human macrophages to lipopolysaccharide by hydroperoxy eicosatetraenoic acid, hydroxy eicosatetraenoic acid, and arachidonic acid. Inhibition of tumor necrosis factor production. J Clin Invest. 1997 Mar 15;99(6):1445–1452. doi: 10.1172/JCI119303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grunfeld C., Zhao C., Fuller J., Pollack A., Moser A., Friedman J., Feingold K. R. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest. 1996 May 1;97(9):2152–2157. doi: 10.1172/JCI118653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herbein G., Montaner L. J., Gordon S. Tumor necrosis factor alpha inhibits entry of human immunodeficiency virus type 1 into primary human macrophages: a selective role for the 75-kilodalton receptor. J Virol. 1996 Nov;70(11):7388–7397. doi: 10.1128/jvi.70.11.7388-7397.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hofmann C., Lorenz K., Braithwaite S. S., Colca J. R., Palazuk B. J., Hotamisligil G. S., Spiegelman B. M. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology. 1994 Jan;134(1):264–270. doi: 10.1210/endo.134.1.8275942. [DOI] [PubMed] [Google Scholar]
  9. Hotamisligil G. S., Arner P., Atkinson R. L., Spiegelman B. M. Differential regulation of the p80 tumor necrosis factor receptor in human obesity and insulin resistance. Diabetes. 1997 Mar;46(3):451–455. doi: 10.2337/diab.46.3.451. [DOI] [PubMed] [Google Scholar]
  10. Mattacks C. A., Pond C. M. The effects of feeding suet-enriched chow on site-specific differences in the composition of triacylglycerol fatty acids in adipose tissue and its interactions in vitro with lymphoid cells. Br J Nutr. 1997 Apr;77(4):621–643. doi: 10.1079/bjn19970061. [DOI] [PubMed] [Google Scholar]
  11. Old L. J. Tumor necrosis factor (TNF). Science. 1985 Nov 8;230(4726):630–632. doi: 10.1126/science.2413547. [DOI] [PubMed] [Google Scholar]
  12. Pond C. M. Functional interpretation of the organization of mammalian adipose tissue: its relationship to the immune system. Biochem Soc Trans. 1996 May;24(2):393–400. doi: 10.1042/bst0240393. [DOI] [PubMed] [Google Scholar]
  13. Pond C. M. Interactions between adipose tissue and the immune system. Proc Nutr Soc. 1996 Mar;55(1B):111–126. doi: 10.1079/pns19960014. [DOI] [PubMed] [Google Scholar]
  14. Pond C. M., Mattacks C. A. Interactions between adipose tissue around lymph nodes and lymphoid cells in vitro. J Lipid Res. 1995 Oct;36(10):2219–2231. [PubMed] [Google Scholar]
  15. Slowik M. R., De Luca L. G., Fiers W., Pober J. S. Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis factor receptor but the p75 receptor contributes to activation at low tumor necrosis factor concentration. Am J Pathol. 1993 Dec;143(6):1724–1730. [PMC free article] [PubMed] [Google Scholar]
  16. Steinshamn S., Bemelmans M. H., van Tits L. J., Bergh K., Buurman W. A., Waage A. TNF receptors in murine Candida albicans infection: evidence for an important role of TNF receptor p55 in antifungal defense. J Immunol. 1996 Sep 1;157(5):2155–2159. [PubMed] [Google Scholar]
  17. Tappia P. S., Ladha S., Clark D. C., Grimble R. F. The influence of membrane fluidity, TNF receptor binding, cAMP production and GTPase activity on macrophage cytokine production in rats fed a variety of fat diets. Mol Cell Biochem. 1997 Jan;166(1-2):135–143. doi: 10.1023/a:1006875010120. [DOI] [PubMed] [Google Scholar]
  18. Tartaglia L. A., Ayres T. M., Wong G. H., Goeddel D. V. A novel domain within the 55 kd TNF receptor signals cell death. Cell. 1993 Sep 10;74(5):845–853. doi: 10.1016/0092-8674(93)90464-2. [DOI] [PubMed] [Google Scholar]
  19. Tracey K. J., Cerami A. Pleiotropic effects of TNF in infection and neoplasia: beneficial, inflammatory, catabolic, or injurious. Immunol Ser. 1992;56:431–452. [PubMed] [Google Scholar]
  20. Varela L. M., Ip M. M. Tumor necrosis factor-alpha: a multifunctional regulator of mammary gland development. Endocrinology. 1996 Nov;137(11):4915–4924. doi: 10.1210/endo.137.11.8895364. [DOI] [PubMed] [Google Scholar]
  21. Yaqoob P., Calder P. C. The effects of dietary lipid manipulation on the production of murine T cell-derived cytokines. Cytokine. 1995 Aug;7(6):548–553. doi: 10.1006/cyto.1995.0074. [DOI] [PubMed] [Google Scholar]
  22. Zhang B., Berger J., Hu E., Szalkowski D., White-Carrington S., Spiegelman B. M., Moller D. E. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol. 1996 Nov;10(11):1457–1466. doi: 10.1210/mend.10.11.8923470. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES