Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 1;25(13):2582–2588. doi: 10.1093/nar/25.13.2582

Visualization of RNA crystal growth by atomic force microscopy.

J D Ng 1, Y G Kuznetsov 1, A J Malkin 1, G Keith 1, R Giegé 1, A McPherson 1
PMCID: PMC146776  PMID: 9185567

Abstract

The crystallization of transfer RNA (tRNA) was investigated using atomic force microscopy (AFM) over the temperature range from 4 to 16 degrees C, and this produced the first in situ AFM images of developing nucleic acid crystals. The growth of the (110) face of hexagonal yeast tRNAPhe crystals was observed to occur at steps on vicinal hillocks generated by multiple screw dislocation sources in the temperature range of 13.5-16 degrees C. Two-dimensional nucleation begins to dominate at 13.5 degrees C, with the appearance of three-dimensional nuclei at 12 degrees C. The changes in growth mechanisms are correlated with variations in supersaturation which is higher in the low temperature range. Growth of tRNA crystals was characterized by a strong anisotropy in the tangential step movement and transformation of growth modes on single crystals were directly observed by AFM over the narrow temperature range utilized. Finally, lattice resolution images of the molecular structure of surface layers were recorded. The implications of the strong temperature dependence of tRNAPhe crystal growth are discussed in view of improving and better controlling crystallization of nucleic acids.

Full Text

The Full Text of this article is available as a PDF (337.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Devaud G., Furcinitti P. S., Fleming J. C., Lyon M. K., Douglas K. Direct observation of defect structure in protein crystals by atomic force and transmission electron microscopy. Biophys J. 1992 Sep;63(3):630–638. doi: 10.1016/S0006-3495(92)81651-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dirheimer G., Ebel J. P. Fractionnement des tRNA de levure de bière par distribution en contre-courant. Bull Soc Chim Biol (Paris) 1967;49(12):1679–1687. [PubMed] [Google Scholar]
  3. Dock A. C., Lorber B., Moras D., Pixa G., Thierry J. C., Giégé R. Crystallization of transfer ribonucleic acids. Biochimie. 1984 Mar;66(3):179–201. doi: 10.1016/0300-9084(84)90063-4. [DOI] [PubMed] [Google Scholar]
  4. Doudna J. A., Grosshans C., Gooding A., Kundrot C. E. Crystallization of ribozymes and small RNA motifs by a sparse matrix approach. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7829–7833. doi: 10.1073/pnas.90.16.7829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Durbin S. D., Feher G. Studies of crystal growth mechanisms of proteins by electron microscopy. J Mol Biol. 1990 Apr 20;212(4):763–774. doi: 10.1016/0022-2836(90)90235-E. [DOI] [PubMed] [Google Scholar]
  6. Fourme R., Ducruix A., Ries-Kautt M., Capelle B. The Perfection of Protein Crystals Probed by Direct Recording of Bragg Reflection Profiles with a Quasi-Planar X-ray Wave. J Synchrotron Radiat. 1995 May 1;2(Pt 3):136–142. doi: 10.1107/S0909049595003943. [DOI] [PubMed] [Google Scholar]
  7. Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
  8. Gilliland G. L., Ladner J. E. Crystallization of biological macromolecules for X-ray diffraction studies. Curr Opin Struct Biol. 1996 Oct;6(5):595–603. doi: 10.1016/s0959-440x(96)80024-8. [DOI] [PubMed] [Google Scholar]
  9. Keith G., Dirheimer G. Evidence for the existence of an expressed minor variant tRNAPhe in yeast. Biochem Biophys Res Commun. 1987 Jan 15;142(1):183–187. doi: 10.1016/0006-291x(87)90468-2. [DOI] [PubMed] [Google Scholar]
  10. Konnert J. H., D'Antonio P., Ward K. B. Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):603–613. doi: 10.1107/S0907444994001988. [DOI] [PubMed] [Google Scholar]
  11. Lietzke S. E., Barnes C. L., Kundrot C. E. Crystallization and structure determination of RNA. Curr Opin Struct Biol. 1995 Oct;5(5):645–649. doi: 10.1016/0959-440x(95)80057-3. [DOI] [PubMed] [Google Scholar]
  12. Malkin A. J., Kuznetsov YuG, Land T. A., DeYoreo J. J., McPherson A. Mechanisms of growth for protein and virus crystals. Nat Struct Biol. 1995 Nov;2(11):956–959. doi: 10.1038/nsb1195-956. [DOI] [PubMed] [Google Scholar]
  13. Malkin A. J., Kuznetsov Y. G., McPherson A. Incorporation of microcrystals by growing protein and virus crystals. Proteins. 1996 Feb;24(2):247–252. doi: 10.1002/(SICI)1097-0134(199602)24:2<247::AID-PROT11>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  14. Malkin AJ, Land TA, Kuznetsov YG, McPherson A, DeYoreo JJ. Investigation of virus crystal growth mechanisms by in situ atomic force microscopy. Phys Rev Lett. 1995 Oct 2;75(14):2778–2781. doi: 10.1103/PhysRevLett.75.2778. [DOI] [PubMed] [Google Scholar]
  15. Moras D., Dock A. C., Dumas P., Westhof E., Romby P., Ebel J. P., Giegé R. The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA. J Biomol Struct Dyn. 1985 Dec;3(3):479–493. doi: 10.1080/07391102.1985.10508436. [DOI] [PubMed] [Google Scholar]
  16. Ott G., Dörfler S., Sprinzl M., Müller U., Heinemann U. Crystals of the chemically synthesized acceptor stem of tRNAAla from Escherichia coli diffracting to high resolution. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):871–873. doi: 10.1107/S0907444996000455. [DOI] [PubMed] [Google Scholar]
  17. Scott W. G., Finch J. T., Grenfell R., Fogg J., Smith T., Gait M. J., Klug A. Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. J Mol Biol. 1995 Jul 14;250(3):327–332. doi: 10.1006/jmbi.1995.0380. [DOI] [PubMed] [Google Scholar]
  18. Snell E. H., Weisgerber S., Helliwell J. R., Hölzer K., Schroer K. Improvements in lysozyme protein crystal perfection through microgravity growth. Acta Crystallogr D Biol Crystallogr. 1995 Nov 1;51(Pt 6):1099–1102. doi: 10.1107/S0907444995012170. [DOI] [PubMed] [Google Scholar]
  19. Wahl M. C., Ramakrishnan B., Ban C., Chen X., Sundaralingam M. RNA - synthesis, purification and crystallization. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):668–675. doi: 10.1107/S0907444996002788. [DOI] [PubMed] [Google Scholar]
  20. Yip C. M., Ward M. D. Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth. Biophys J. 1996 Aug;71(2):1071–1078. doi: 10.1016/S0006-3495(96)79307-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES