Abstract
We examined cells from the nucleus pulposus and annulus fibrosus of adult bovine intervertebral discs, using confocal laser scanning microscopy on living unfixed tissue. These cells were visualised using chloromethyl fluorescein diacetate, a membrane-impermeant fluorescent dye. The organisation of cells from the outer annulus was also determined using confocal microscopy after fixation and staining the actin-filaments with FITC-phalloidin. We found that cellular processes were a dominant feature of cells from all regions of the disc including the cells of the nucleus pulposus and inner annulus. These processes were also visible in histological sections of disc examined both at the light and electron microscope level, even though cells from the nucleus and inner annulus appeared chondrocyte-like, being rounded and enclosed in a capsule. The function of these processes is at present unknown. We suggest that they may serve to sense mechanical strain.
Keywords: Chondrocytes, nucleus pulposus, annulus fibrosus, actin
Full Text
The Full Text of this article is available as a PDF (606.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayliss M. T., Johnstone B., O'Brien J. P. 1988 Volvo award in basic science. Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology. Spine (Phila Pa 1976) 1988 Sep;13(9):972–981. doi: 10.1097/00007632-198809000-00003. [DOI] [PubMed] [Google Scholar]
- Bayliss M. T., Urban J. P., Johnstone B., Holm S. In vitro method for measuring synthesis rates in the intervertebral disc. J Orthop Res. 1986;4(1):10–17. doi: 10.1002/jor.1100040102. [DOI] [PubMed] [Google Scholar]
- Chelberg M. K., Banks G. M., Geiger D. F., Oegema T. R., Jr Identification of heterogeneous cell populations in normal human intervertebral disc. J Anat. 1995 Feb;186(Pt 1):43–53. [PMC free article] [PubMed] [Google Scholar]
- Errington R. J., Fricker M. D., Wood J. L., Hall A. C., White N. S. Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: a pragmatic approach. Am J Physiol. 1997 Mar;272(3 Pt 1):C1040–C1051. doi: 10.1152/ajpcell.1997.272.3.C1040. [DOI] [PubMed] [Google Scholar]
- Eyre D. R. Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res. 1979;8:227–291. doi: 10.1016/b978-0-12-363708-6.50012-6. [DOI] [PubMed] [Google Scholar]
- Eyre D. R., Muir H. Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J. 1976 Jul 1;157(1):267–270. doi: 10.1042/bj1570267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunziker E. B., Herrmann W., Schenk R. K. Ruthenium hexammine trichloride (RHT)-mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is responsible for the preservation of chondrocytic plasma membranes in situ during cartilage fixation. J Histochem Cytochem. 1983 Jun;31(6):717–727. doi: 10.1177/31.6.6341460. [DOI] [PubMed] [Google Scholar]
- Ichimura K., Tsuji H., Matsui H., Makiyama N. Cell culture of the intervertebral disc of rats: factors influencing culture, proteoglycan, collagen, and deoxyribonucleic acid synthesis. J Spinal Disord. 1991 Dec;4(4):428–436. doi: 10.1097/00002517-199112000-00004. [DOI] [PubMed] [Google Scholar]
- Ishihara H., McNally D. S., Urban J. P., Hall A. C. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol (1985) 1996 Mar;80(3):839–846. doi: 10.1152/jappl.1996.80.3.839. [DOI] [PubMed] [Google Scholar]
- Johnstone B., Bayliss M. T. The large proteoglycans of the human intervertebral disc. Changes in their biosynthesis and structure with age, topography, and pathology. Spine (Phila Pa 1976) 1995 Mar 15;20(6):674–684. doi: 10.1097/00007632-199503150-00008. [DOI] [PubMed] [Google Scholar]
- Klein-Nulend J., van der Plas A., Semeins C. M., Ajubi N. E., Frangos J. A., Nijweide P. J., Burger E. H. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995 Mar;9(5):441–445. doi: 10.1096/fasebj.9.5.7896017. [DOI] [PubMed] [Google Scholar]
- Maldonado B. A., Oegema T. R., Jr Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res. 1992 Sep;10(5):677–690. doi: 10.1002/jor.1100100510. [DOI] [PubMed] [Google Scholar]
- Maroudas A., Stockwell R. A., Nachemson A., Urban J. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat. 1975 Sep;120(Pt 1):113–130. [PMC free article] [PubMed] [Google Scholar]
- Martin P., Lewis J. Actin cables and epidermal movement in embryonic wound healing. Nature. 1992 Nov 12;360(6400):179–183. doi: 10.1038/360179a0. [DOI] [PubMed] [Google Scholar]
- McNeilly C. M., Banes A. J., Benjamin M., Ralphs J. R. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat. 1996 Dec;189(Pt 3):593–600. [PMC free article] [PubMed] [Google Scholar]
- Oegema T. R., Jr Biochemistry of the intervertebral disc. Clin Sports Med. 1993 Jul;12(3):419–439. [PubMed] [Google Scholar]
- Ohshima H., Urban J. P., Bergel D. H. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res. 1995 Jan;13(1):22–29. doi: 10.1002/jor.1100130106. [DOI] [PubMed] [Google Scholar]
- PEACOCK A. Observations on the postnatal structure of the intervertebral disc in man. J Anat. 1952 Apr;86(2):162–179. [PMC free article] [PubMed] [Google Scholar]
- Postacchini F., Bellocci M., Massobrio M. Morphologic changes in annulus fibrosus during aging. An ultrastructural study in rats. Spine (Phila Pa 1976) 1984 Sep;9(6):596–603. doi: 10.1097/00007632-198409000-00010. [DOI] [PubMed] [Google Scholar]
- Pritzker K. P. Aging and degeneration in the lumbar intervertebral disc. Orthop Clin North Am. 1977 Jan;8(1):66–77. [PubMed] [Google Scholar]
- Puustjärvi K., Lammi M., Kiviranta I., Helminen H. J., Tammi M. Proteoglycan synthesis in canine intervertebral discs after long-distance running training. J Orthop Res. 1993 Sep;11(5):738–746. doi: 10.1002/jor.1100110516. [DOI] [PubMed] [Google Scholar]
- Roberts S., Menage J., Duance V., Wotton S., Ayad S. 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine (Phila Pa 1976) 1991 Sep;16(9):1030–1038. [PubMed] [Google Scholar]
- Rufai A., Benjamin M., Ralphs J. R. The development of fibrocartilage in the rat intervertebral disc. Anat Embryol (Berl) 1995 Jul;192(1):53–62. doi: 10.1007/BF00186991. [DOI] [PubMed] [Google Scholar]
- Schultz A. B., Benson D. R., Hirsch C. Force-deformation properties of human costo-sternal and costo-vertebral articulations. J Biomech. 1974 May;7(3):311–318. doi: 10.1016/0021-9290(74)90024-4. [DOI] [PubMed] [Google Scholar]
- Trout J. J., Buckwalter J. A., Moore K. C. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec. 1982 Dec;204(4):307–314. doi: 10.1002/ar.1092040403. [DOI] [PubMed] [Google Scholar]
- Urban J. P., Roberts S. Development and degeneration of the intervertebral discs. Mol Med Today. 1995 Oct;1(7):329–335. doi: 10.1016/s1357-4310(95)80032-8. [DOI] [PubMed] [Google Scholar]
- WALMSLEY R. The development and growth of the intervertebral disc. Edinb Med J. 1953 Aug;60(8):341–364. [PMC free article] [PubMed] [Google Scholar]