Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 May;192(Pt 4):517–528. doi: 10.1046/j.1469-7580.1998.19240517.x

Spatial distribution of nerve processes and β-adrenoreceptors in the rat atrioventricular node

KEVIN PETRECCA 1, ALVIN SHRIER 1,
PMCID: PMC1467806  PMID: 9723979

Abstract

Atrioventricular (AV) nodal conduction time is known to be modulated by the autonomic nervous system. The presence of numerous parasympathetic and sympathetic nerve fibres in association with conduction tissue in the heart is well authenticated. In this study, confocal microscopy was used to image the distribution of antibodies directed against the general neuronal marker PGP 9.5, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and β1 and β2-adrenoreceptors. Serial 12 μm sections of fresh frozen tissue taken from the frontal plane of the rat atrioventricular node, His bundle and bundle branches were processed for histology, acetylcholinesterase (AChE) activity and immunohistochemistry. It was found that the AV and ventricular conduction systems were more densely innervated than the atrial and ventricular myocardium as revealed by PGP 9.5 immunoreactivity. Furthermore, the transitional cell region was more densely innervated than the midnodal cell region, while spatial distribution of total innervation was uniform throughout all AV nodal regions. AChE-reactive nerve processes were found throughout the AV and ventricular conduction systems, the spatial distribution of which was nonuniform exhibiting a paucity of AChE-reactive nerve processes in the central midnodal cell region and a preponderance in the circumferential transitional cell region. TH-immunoreactivity was uniformly distributed throughout the AV and ventricular conduction systems including the central midnodal and circumferential transitional cell regions. β1-adrenoreceptors were found throughout the AV and ventricular conduction systems with a preponderance in the circumferential transitional cell region. β2-adrenoreceptors were localised predominantly in AV and ventricular conduction systems with a paucity of expression in the circumferential transitional cell region. These results demonstrate that the overall uniform distribution of total nerve processes is comprised of nonuniformly distributed subpopulations of parasympathetic and sympathetic nerve processes. The observation that the midnodal cell region exhibits a differential spatial pattern of parasympathetic and sympathetic innervation suggests multiple sites for modulation of impulse conduction within this region. Moreover, the localisation of β2-ARs in the AV conduction system, with an absence of expression in the circumferential transitional cell layer, suggests that subtype-specific pharmacological agents may have distinct effects upon AV nodal conduction.

Keywords: Heart, cardiac conducting system, autonomic nervous system

Full Text

The Full Text of this article is available as a PDF (801.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Accili E. A., Buchan A. M., Kwok Y. N., Ledsome J. R., Brown J. C. Presence and actions of vasoactive intestinal peptide in the isolated rabbit heart. Can J Physiol Pharmacol. 1995 Jan;73(1):134–139. doi: 10.1139/y95-019. [DOI] [PubMed] [Google Scholar]
  2. Akiyama T., Fozzard H. A. Ca and Na selectivity of the active membrane of rabbit AV nodal cells. Am J Physiol. 1979 Jan;236(1):C1–C8. doi: 10.1152/ajpcell.1979.236.1.C1. [DOI] [PubMed] [Google Scholar]
  3. Anderson F. L., Kralios A. C., Hershberger R., Bristow M. R. Effect of vasoactive intestinal peptide on myocardial contractility and coronary blood flow in the dog: comparison with isoproterenol and forskolin. J Cardiovasc Pharmacol. 1988 Sep;12(3):365–371. doi: 10.1097/00005344-198809000-00016. [DOI] [PubMed] [Google Scholar]
  4. Anderson R. H. Histologic and histochemical evidence concerning the presence of morphologically distinct cellular zones within the rabbit atrioventricular node. Anat Rec. 1972 May;173(1):7–23. doi: 10.1002/ar.1091730102. [DOI] [PubMed] [Google Scholar]
  5. Anderson R. H., Janse M. J., van Capelle F. J., Billette J., Becker A. E., Durrer D. A combined morphological and electrophysiological study of the atrioventricular node of the rabbit heart. Circ Res. 1974 Dec;35(6):909–922. doi: 10.1161/01.res.35.6.909. [DOI] [PubMed] [Google Scholar]
  6. Beau S. L., Hand D. E., Schuessler R. B., Bromberg B. I., Kwon B., Boineau J. P., Saffitz J. E. Relative densities of muscarinic cholinergic and beta-adrenergic receptors in the canine sinoatrial node and their relation to sites of pacemaker activity. Circ Res. 1995 Nov;77(5):957–963. doi: 10.1161/01.res.77.5.957. [DOI] [PubMed] [Google Scholar]
  7. Cowen T., Haven A. J., Burnstock G. Pontamine sky blue: a counterstain for background autofluorescence in fluorescence and immunofluorescence histochemistry. Histochemistry. 1985;82(3):205–208. doi: 10.1007/BF00501396. [DOI] [PubMed] [Google Scholar]
  8. Crick S. J., Sheppard M. N., Anderson R. H., Polak J. M., Wharton J. A quantitative assessment of innervation in the conduction system of the calf heart. Anat Rec. 1996 Aug;245(4):685–698. doi: 10.1002/(SICI)1097-0185(199608)245:4<685::AID-AR9>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  9. Crick S. J., Sheppard M. N., Anderson R. H., Polak J. M., Wharton J. A quantitative study of nerve distribution in the conduction system of the guinea pig heart. J Anat. 1996 Apr;188(Pt 2):403–416. [PMC free article] [PubMed] [Google Scholar]
  10. Crick S. J., Wharton J., Sheppard M. N., Royston D., Yacoub M. H., Anderson R. H., Polak J. M. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation. 1994 Apr;89(4):1697–1708. doi: 10.1161/01.cir.89.4.1697. [DOI] [PubMed] [Google Scholar]
  11. El-Badawi A., Schenk E. A. Histochemical methods for separate, consecutive and simultaneous demonstration of acetylcholinesterase and norepinephrine in cryostat sections. J Histochem Cytochem. 1967 Oct;15(10):580–588. doi: 10.1177/15.10.580. [DOI] [PubMed] [Google Scholar]
  12. Fisher L. A., Kikkawa D. O., Rivier J. E., Amara S. G., Evans R. M., Rosenfeld M. G., Vale W. W., Brown M. R. Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide. Nature. 1983 Oct 6;305(5934):534–536. doi: 10.1038/305534a0. [DOI] [PubMed] [Google Scholar]
  13. Forsgren S. Distribution of calcitonin gene-related peptide-like immunoreactivity in the bovine conduction system: correlation with substance P. Regul Pept. 1994 Jun 16;52(1):7–19. doi: 10.1016/0167-0115(94)90016-7. [DOI] [PubMed] [Google Scholar]
  14. Forssmann W. G., Triepel J., Daffner C., Heym C., Cuevas P., Noble M. I., Yanaihara N. Vasoactive intestinal peptide in the heart. Ann N Y Acad Sci. 1988;527:405–420. doi: 10.1111/j.1749-6632.1988.tb26996.x. [DOI] [PubMed] [Google Scholar]
  15. HOFFMAN B. F. Physiology of atrioventricular transmission. Circulation. 1961 Aug;24:506–517. doi: 10.1161/01.cir.24.2.506. [DOI] [PubMed] [Google Scholar]
  16. Haberberger R., Kummer W. beta 2-adrenoreceptor immunoreactivity in cardiac ganglia of the guinea pig. Histochem J. 1996 Nov;28(11):827–833. doi: 10.1007/BF02272155. [DOI] [PubMed] [Google Scholar]
  17. Hill M. R., Wallick D. W., Martin P. J., Levy M. N. Frequency dependence of vasoactive intestinal polypeptide release and vagally induced tachycardia in the canine heart. J Auton Nerv Syst. 1993 May;43(2):117–122. doi: 10.1016/0165-1838(93)90348-x. [DOI] [PubMed] [Google Scholar]
  18. Hoffman B. F. Autonomic control of cardiac rhythm. Bull N Y Acad Med. 1967 Dec;43(12):1087–1096. [PMC free article] [PubMed] [Google Scholar]
  19. Imaizumi S., Mazgalev T., Dreifus L. S., Michelson E. L., Miyagawa A., Bharati S., Lev M. Morphological and electrophysiological correlates of atrioventricular nodal response to increased vagal activity. Circulation. 1990 Sep;82(3):951–964. doi: 10.1161/01.cir.82.3.951. [DOI] [PubMed] [Google Scholar]
  20. Koller-Strametz J., Kratochwill C., Grabenwöger M., Laufer G., Pacher R., Gemeiner N., Gasic S., Heinz G. PR interval adaptation in the denervated transplanted heart. Pacing Clin Electrophysiol. 1997 May;20(5 Pt 1):1247–1251. doi: 10.1111/j.1540-8159.1997.tb06777.x. [DOI] [PubMed] [Google Scholar]
  21. Lands A. M., Arnold A., McAuliff J. P., Luduena F. P., Brown T. G., Jr Differentiation of receptor systems activated by sympathomimetic amines. Nature. 1967 May 6;214(5088):597–598. doi: 10.1038/214597a0. [DOI] [PubMed] [Google Scholar]
  22. Mochet M., Moravec J., Guillemot H., Hatt P. Y. The ultrastructure of rat conductive tissue; an electron microscopic study of the atrioventricular node and the bundle of His. J Mol Cell Cardiol. 1975 Dec;7(12):879–889. doi: 10.1016/0022-2828(75)90149-2. [DOI] [PubMed] [Google Scholar]
  23. Molenaar P., Russell F. D., Shimada T., Summers R. J. Densitometric analysis of beta 1- and beta 2-adrenoceptors in guinea-pig atrioventricular conducting system. J Mol Cell Cardiol. 1990 Apr;22(4):483–495. doi: 10.1016/0022-2828(90)91483-n. [DOI] [PubMed] [Google Scholar]
  24. Mulderry P. K., Ghatei M. A., Rodrigo J., Allen J. M., Rosenfeld M. G., Polak J. M., Bloom S. R. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience. 1985 Mar;14(3):947–954. doi: 10.1016/0306-4522(85)90156-3. [DOI] [PubMed] [Google Scholar]
  25. Munk A. A., Adjemian R. A., Zhao J., Ogbaghebriel A., Shrier A. Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J Physiol. 1996 Jun 15;493(Pt 3):801–818. doi: 10.1113/jphysiol.1996.sp021424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noma A., Irisawa H., Kokobun S., Kotake H., Nishimura M., Watanabe Y. Slow current systems in the A-V node of the rabbit heart. Nature. 1980 May 22;285(5762):228–229. doi: 10.1038/285228a0. [DOI] [PubMed] [Google Scholar]
  27. Petrecca K., Amellal F., Laird D. W., Cohen S. A., Shrier A. Sodium channel distribution within the rabbit atrioventricular node as analysed by confocal microscopy. J Physiol. 1997 Jun 1;501(Pt 2):263–274. doi: 10.1111/j.1469-7793.1997.263bn.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rigel D. F. Effects of neuropeptides on heart rate in dogs: comparison of VIP, PHI, NPY, CGRP, and NT. Am J Physiol. 1988 Aug;255(2 Pt 2):H311–H317. doi: 10.1152/ajpheart.1988.255.2.H311. [DOI] [PubMed] [Google Scholar]
  29. Rigel D. F., Lathrop D. A. Vasoactive intestinal polypeptide facilitates atrioventricular nodal conduction and shortens atrial and ventricular refractory periods in conscious and anesthetized dogs. Circ Res. 1990 Dec;67(6):1323–1333. doi: 10.1161/01.res.67.6.1323. [DOI] [PubMed] [Google Scholar]
  30. Saito K., Kurihara M., Cruciani R., Potter W. Z., Saavedra J. M. Characterization of beta 1- and beta 2-adrenoceptor subtypes in the rat atrioventricular node by quantitative autoradiography. Circ Res. 1988 Jan;62(1):173–177. doi: 10.1161/01.res.62.1.173. [DOI] [PubMed] [Google Scholar]
  31. Saito K., Torda T., Potter W. Z., Saavedra J. M. Characterization of beta 1- and beta 2-adrenoceptor subtypes in the rat sinoatrial node and stellate ganglia by quantitative autoradiography. Neurosci Lett. 1989 Jan 2;96(1):35–41. doi: 10.1016/0304-3940(89)90239-5. [DOI] [PubMed] [Google Scholar]
  32. Steele P. A., Choate J. K. Innervation of the pacemaker in guinea-pig sinoatrial node. J Auton Nerv Syst. 1994 May;47(3):177–187. doi: 10.1016/0165-1838(94)90179-1. [DOI] [PubMed] [Google Scholar]
  33. Takei M., Furukawa Y., Narita M., Murakami M., Ren L. M., Karasawa Y., Chiba S. Sympathetic nerve stimulation activates both beta 1- and beta 2-adrenoceptors of SA and AV nodes in anesthetized dog hearts. Jpn J Pharmacol. 1992 May;59(1):23–30. doi: 10.1254/jjp.59.23. [DOI] [PubMed] [Google Scholar]
  34. Ursell P. C., Ren C. L., Albala A., Danilo P., Jr Nonadrenergic noncholinergic innervation. Anatomic distribution of calcitonin gene-related peptide-immunoreactive tissue in the dog heart. Circ Res. 1991 Jan;68(1):131–140. doi: 10.1161/01.res.68.1.131. [DOI] [PubMed] [Google Scholar]
  35. Ursell P. C., Ren C. L., Danilo P., Jr Anatomic distribution of autonomic neural tissue in the developing dog heart: II. Nonadrenergic noncholinergic innervation by calcitonin gene-related peptide-immunoreactive tissue. Anat Rec. 1991 Aug;230(4):531–538. doi: 10.1002/ar.1092300413. [DOI] [PubMed] [Google Scholar]
  36. Urthaler F., Neely B. H., Hageman G. R., Smith L. R. Differential sympathetic-parasympathetic interactions in sinus node and AV junction. Am J Physiol. 1986 Jan;250(1 Pt 2):H43–H51. doi: 10.1152/ajpheart.1986.250.1.H43. [DOI] [PubMed] [Google Scholar]
  37. Watanabe Y. Peculiarities of AV nodal conduction and the role of slow Na current. Jpn Circ J. 1981 Apr;45(4):446–452. doi: 10.1253/jcj.45.446. [DOI] [PubMed] [Google Scholar]
  38. Weihe E., Reinecke M., Forssmann W. G. Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the mammalian heart. Interrelation with neurotensin- and substance P-like immunoreactive nerves. Cell Tissue Res. 1984;236(3):527–540. doi: 10.1007/BF00217219. [DOI] [PubMed] [Google Scholar]
  39. Wit A. L., Cranefield P. F. Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests reentrant atrioventricular nodal tachycardia. Circ Res. 1974 Sep;35(3):413–425. doi: 10.1161/01.res.35.3.413. [DOI] [PubMed] [Google Scholar]
  40. Zipes D. P., Mendez C. Action of manganese ions and tetrodotoxin on atrioventricular nodal transmembrane potentials in isolated rabbit hearts. Circ Res. 1973 Apr;32(4):447–454. doi: 10.1161/01.res.32.4.447. [DOI] [PubMed] [Google Scholar]
  41. de CARVALHO A., de ALMEIDA D. Spread of activity through the atrioventricular node. Circ Res. 1960 Jul;8:801–809. doi: 10.1161/01.res.8.4.801. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES