Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 May;192(Pt 4):565–572. doi: 10.1046/j.1469-7580.1998.19240565.x

The central canal of the human spinal cord: a computerised 3-D study

K P STORER 1, J TOH 1, M A STOODLEY 1, N R JONES 1,
PMCID: PMC1467810  PMID: 9723983

Abstract

Knowledge of the structure and function of the central canal of the human spinal cord is important in understanding the pathogenesis of syringomyelia. Analysis of the morphology of the central canal is difficult using isolated histological sections. A 3-dimensional reconstruction technique using digitised histological sections was therefore developed to visualise the morphology of the central canal. The technique was used to study the canal in the conus medullaris and filum terminale of 1 sheep and 4 human spinal cords. A variety of morphological features were demonstrated including canal duplication, a terminal ventricle and openings from the canal lumen into the subarachnoid space. The findings suggest the possibility of a functionally important fluid communication in the caudal spinal cord which may have a sink function.

Keywords: Syringomyelia, spinal cord

Full Text

The Full Text of this article is available as a PDF (511.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach-y-Rita P. Nonsynaptic diffusion neurotransmission (NDN) in the brain. Neurochem Int. 1993 Oct;23(4):297–318. doi: 10.1016/0197-0186(93)90074-f. [DOI] [PubMed] [Google Scholar]
  2. Becker D. P., Wilson J. A., Watson G. W. The spinal cord central canal: response to experimental hydrocephalus and canal occlusion. J Neurosurg. 1972 Apr;36(4):416–424. doi: 10.3171/jns.1972.36.4.0416. [DOI] [PubMed] [Google Scholar]
  3. Beuls E., Gelan J., Vandersteen M., Adriaensens P., Vanormelingen L., Palmers Y. Microanatomy of the excised human spinal cord and the cervicomedullary junction examined with high-resolution MR imaging at 9.4 Tesla. AJNR Am J Neuroradiol. 1993 May-Jun;14(3):699–707. [PMC free article] [PubMed] [Google Scholar]
  4. Bradbury M. W., Lathem W. A flow of cerebrospinal fluid along the central canal of the spinal cord of the rabbit and communications between this canal and the sacral subarachnoid space. J Physiol. 1965 Dec;181(4):785–800. doi: 10.1113/jphysiol.1965.sp007797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choi B. H., Kim R. C., Suzuki M., Choe W. The ventriculus terminalis and filum terminale of the human spinal cord. Hum Pathol. 1992 Aug;23(8):916–920. doi: 10.1016/0046-8177(92)90405-r. [DOI] [PubMed] [Google Scholar]
  6. Cifuentes M., Rodríguez S., Pérez J., Grondona J. M., Rodríguez E. M., Fernández-Llebrez P. Decreased cerebrospinal fluid flow through the central canal of the spinal cord of rats immunologically deprived of Reissner's fibre. Exp Brain Res. 1994;98(3):431–440. doi: 10.1007/BF00233981. [DOI] [PubMed] [Google Scholar]
  7. Cserr H. F., Depasquale M., Patlak C. S., Pullen R. G. Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann N Y Acad Sci. 1986;481:123–134. doi: 10.1111/j.1749-6632.1986.tb27144.x. [DOI] [PubMed] [Google Scholar]
  8. Gower D. J., Pollay M., Leech R. Pediatric syringomyelia. J Child Neurol. 1994 Jan;9(1):14–21. doi: 10.1177/088307389400900103. [DOI] [PubMed] [Google Scholar]
  9. Ikegami Y., Morita F. Cerebrospinal fluid contacting neurons and openings of the central canal in rabbits and monkeys--light and electron microscopic observation. Bull Osaka Med Sch. 1987 Jul;33(1):1–19. [PubMed] [Google Scholar]
  10. Lendon R. G., Emery J. L. Forking of the central canal in the equinal cord of children. J Anat. 1970 May;106(Pt 3):499–505. [PMC free article] [PubMed] [Google Scholar]
  11. Milhorat T. H., Adler D. E., Heger I. M., Miller J. I., Hollenberg-Sher J. R. Histopathology of experimental hematomyelia. J Neurosurg. 1991 Dec;75(6):911–915. doi: 10.3171/jns.1991.75.6.0911. [DOI] [PubMed] [Google Scholar]
  12. Milhorat T. H., Kotzen R. M., Anzil A. P. Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg. 1994 Apr;80(4):716–722. doi: 10.3171/jns.1994.80.4.0716. [DOI] [PubMed] [Google Scholar]
  13. Milhorat T. H., Nobandegani F., Miller J. I., Rao C. Noncommunicating syringomyelia following occlusion of central canal in rats. Experimental model and histological findings. J Neurosurg. 1993 Feb;78(2):274–279. doi: 10.3171/jns.1993.78.2.0274. [DOI] [PubMed] [Google Scholar]
  14. Nakayama Y. The openings of the central canal in the filum terminale internum of some mammals. J Neurocytol. 1976 Oct;5(8):531–544. doi: 10.1007/BF01175567. [DOI] [PubMed] [Google Scholar]
  15. Newman P. K., Terenty T. R., Foster J. B. Some observations on the pathogenesis of syringomyelia. J Neurol Neurosurg Psychiatry. 1981 Nov;44(11):964–969. doi: 10.1136/jnnp.44.11.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sakata M., Yashika K., Hashimoto P. H. Caudal aperture of the central canal at the filum terminale in primates. Kaibogaku Zasshi. 1993 Apr;68(2):213–219. [PubMed] [Google Scholar]
  17. Sanz Gallén P., Gimferrer E., Llobet J. M., Nogué S., Corbella J. Intoxicación crónica por plomo asociada a betatalasemia minor. Rev Clin Esp. 1987 May;180(8):463–464. [PubMed] [Google Scholar]
  18. Williams B. The distending force in the production of "communicating syringomyelia". Lancet. 1969 Jul 26;2(7613):189–193. doi: 10.1016/s0140-6736(69)91427-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES