Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Jul;193(Pt 1):1–21. doi: 10.1046/j.1469-7580.1998.19310001.x

The role of laminins in basement membrane function

MONIQUE AUMAILLEY 1,, NEIL SMYTH 1
PMCID: PMC1467819  PMID: 9758133

Abstract

Laminins are a family of multifunctional macromolecules, ubiquitous in basement membranes, and represent the most abundant structural noncollagenous glycoproteins of these highly specialised extracellular matrices. Their discovery started with the difficult task of isolating molecules produced by cultivated cells or extracted from tissues. The development of molecular biology techniques has facilitated and accelerated the identification and the characterisation of new laminin variants making it feasible to identify full-length polypeptides which have not been purified. Further, genetically engineered laminin fragments can be generated for studies of their structure-function relationship, permitting the demonstration that laminins are involved in multiple interactions with themselves, with other components of the basal lamina, and with cells. It endows laminins with a central role in the formation, the architecture, and the stability of basement membranes. In addition, laminins may both separate and connect different tissues, i.e. the parenchymal and the interstitial connective tissues. Laminins also provide adjacent cells with a mechanical scaffold and biological information either directly by interacting with cell surface components, or indirectly by trapping growth factors. In doing so they trigger and control cellular functions. Recently, the structural and biological diversity of the laminins has started to be elucidated by gene targeting and by the identification of laminin defects in acquired or inherited human diseases. The consequent phenotypes highlight the pivotal role of laminins in determining heterogeneity in basement membrane functions.

Keywords: Extracellular matrix, congenital muscular dystrophy, epidermolysis bullosa

Full Text

The Full Text of this article is available as a PDF (681.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberdam D., Galliano M. F., Vailly J., Pulkkinen L., Bonifas J., Christiano A. M., Tryggvason K., Uitto J., Epstein E. H., Jr, Ortonne J. P. Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the gamma 2 subunit of nicein/kalinin (LAMININ-5). Nat Genet. 1994 Mar;6(3):299–304. doi: 10.1038/ng0394-299. [DOI] [PubMed] [Google Scholar]
  2. Allamand V., Sunada Y., Salih M. A., Straub V., Ozo C. O., Al-Turaiki M. H., Akbar M., Kolo T., Colognato H., Zhang X. Mild congenital muscular dystrophy in two patients with an internally deleted laminin alpha2-chain. Hum Mol Genet. 1997 May;6(5):747–752. doi: 10.1093/hmg/6.5.747. [DOI] [PubMed] [Google Scholar]
  3. Ancsin J. B., Kisilevsky R. Characterization of high affinity binding between laminin and the acute-phase protein, serum amyloid A. J Biol Chem. 1997 Jan 3;272(1):406–413. doi: 10.1074/jbc.272.1.406. [DOI] [PubMed] [Google Scholar]
  4. Angoli D., Corona P., Baresi R., Mora M., Wanke E. Laminin-alpha2 but not -alpha1-mediated adhesion of human (Duchenne) and murine (mdx) dystrophic myotubes is seriously defective. FEBS Lett. 1997 May 26;408(3):341–344. doi: 10.1016/s0014-5793(97)00460-2. [DOI] [PubMed] [Google Scholar]
  5. Arahata K., Ishii H., Hayashi Y. K. Congenital muscular dystrophies. Curr Opin Neurol. 1995 Oct;8(5):385–390. doi: 10.1097/00019052-199510000-00011. [DOI] [PubMed] [Google Scholar]
  6. Aumailley M., Gerl M., Sonnenberg A., Deutzmann R., Timpl R. Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett. 1990 Mar 12;262(1):82–86. doi: 10.1016/0014-5793(90)80159-g. [DOI] [PubMed] [Google Scholar]
  7. Aumailley M., Krieg T. Laminins: a family of diverse multifunctional molecules of basement membranes. J Invest Dermatol. 1996 Feb;106(2):209–214. doi: 10.1111/1523-1747.ep12340471. [DOI] [PubMed] [Google Scholar]
  8. Aumailley M., Nurcombe V., Edgar D., Paulsson M., Timpl R. The cellular interactions of laminin fragments. Cell adhesion correlates with two fragment-specific high affinity binding sites. J Biol Chem. 1987 Aug 25;262(24):11532–11538. [PubMed] [Google Scholar]
  9. Aumailley M., Timpl R., Sonnenberg A. Antibody to integrin alpha 6 subunit specifically inhibits cell-binding to laminin fragment 8. Exp Cell Res. 1990 May;188(1):55–60. doi: 10.1016/0014-4827(90)90277-h. [DOI] [PubMed] [Google Scholar]
  10. Aumailley M., Wiedemann H., Mann K., Timpl R. Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur J Biochem. 1989 Sep 1;184(1):241–248. doi: 10.1111/j.1432-1033.1989.tb15013.x. [DOI] [PubMed] [Google Scholar]
  11. Balding S. D., Diaz L. A., Giudice G. J. A recombinant form of the human BP180 ectodomain forms a collagen-like homotrimeric complex. Biochemistry. 1997 Jul 22;36(29):8821–8830. doi: 10.1021/bi970675n. [DOI] [PubMed] [Google Scholar]
  12. Barondes S. H., Castronovo V., Cooper D. N., Cummings R. D., Drickamer K., Feizi T., Gitt M. A., Hirabayashi J., Hughes C., Kasai K. Galectins: a family of animal beta-galactoside-binding lectins. Cell. 1994 Feb 25;76(4):597–598. doi: 10.1016/0092-8674(94)90498-7. [DOI] [PubMed] [Google Scholar]
  13. Battaglia C., Mayer U., Aumailley M., Timpl R. Basement-membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core. Eur J Biochem. 1992 Sep 1;208(2):359–366. doi: 10.1111/j.1432-1033.1992.tb17195.x. [DOI] [PubMed] [Google Scholar]
  14. Baudoin C., Miquel C., Gagnoux-Palacios L., Pulkkinen L., Christiano A. M., Uitto J., Tadini G., Ortonne J. P., Meneguzzi G. A novel homozygous nonsense mutation in the LAMC2 gene in patients with the Herlitz junctional epidermolysis bullosa. Hum Mol Genet. 1994 Oct;3(10):1909–1910. doi: 10.1093/hmg/3.10.1909. [DOI] [PubMed] [Google Scholar]
  15. Baumgartner R., Czisch M., Mayer U., Pöschl E., Huber R., Timpl R., Holak T. A. Structure of the nidogen binding LE module of the laminin gamma1 chain in solution. J Mol Biol. 1996 Apr 5;257(3):658–668. doi: 10.1006/jmbi.1996.0192. [DOI] [PubMed] [Google Scholar]
  16. Beck K., Dixon T. W., Engel J., Parry D. A. Ionic interactions in the coiled-coil domain of laminin determine the specificity of chain assembly. J Mol Biol. 1993 May 20;231(2):311–323. doi: 10.1006/jmbi.1993.1284. [DOI] [PubMed] [Google Scholar]
  17. Beck K., Hunter I., Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 1990 Feb 1;4(2):148–160. doi: 10.1096/fasebj.4.2.2404817. [DOI] [PubMed] [Google Scholar]
  18. Brandenberger R., Kammerer R. A., Engel J., Chiquet M. Native chick laminin-4 containing the beta 2 chain (s-laminin) promotes motor axon growth. J Cell Biol. 1996 Dec;135(6 Pt 1):1583–1592. doi: 10.1083/jcb.135.6.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Brown J. C., Goodman S. L. Different cellular receptors for human placental laminin and murine EHS laminin. FEBS Lett. 1991 Apr 22;282(1):5–8. doi: 10.1016/0014-5793(91)80432-3. [DOI] [PubMed] [Google Scholar]
  20. Brown J. C., Timpl R. The collagen superfamily. Int Arch Allergy Immunol. 1995 Aug;107(4):484–490. doi: 10.1159/000237090. [DOI] [PubMed] [Google Scholar]
  21. Brown J. C., Wiedemann H., Timpl R. Protein binding and cell adhesion properties of two laminin isoforms (AmB1eB2e, AmB1sB2e) from human placenta. J Cell Sci. 1994 Jan;107(Pt 1):329–338. doi: 10.1242/jcs.107.1.329. [DOI] [PubMed] [Google Scholar]
  22. Brown T. A., Gil S. G., Sybert V. P., Lestringant G. G., Tadini G., Caputo R., Carter W. G. Defective integrin alpha 6 beta 4 expression in the skin of patients with junctional epidermolysis bullosa and pyloric atresia. J Invest Dermatol. 1996 Sep;107(3):384–391. doi: 10.1111/1523-1747.ep12363370. [DOI] [PubMed] [Google Scholar]
  23. Burgeson R. E., Chiquet M., Deutzmann R., Ekblom P., Engel J., Kleinman H., Martin G. R., Meneguzzi G., Paulsson M., Sanes J. A new nomenclature for the laminins. Matrix Biol. 1994 Apr;14(3):209–211. doi: 10.1016/0945-053x(94)90184-8. [DOI] [PubMed] [Google Scholar]
  24. Burgeson R. E. Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J Invest Dermatol. 1993 Sep;101(3):252–255. doi: 10.1111/1523-1747.ep12365129. [DOI] [PubMed] [Google Scholar]
  25. Bédane C., McMillan J. R., Balding S. D., Bernard P., Prost C., Bonnetblanc J. M., Diaz L. A., Eady R. A., Giudice G. J. Bullous pemphigoid and cicatricial pemphigoid autoantibodies react with ultrastructurally separable epitopes on the BP180 ectodomain: evidence that BP180 spans the lamina lucida. J Invest Dermatol. 1997 Jun;108(6):901–907. doi: 10.1111/1523-1747.ep12292701. [DOI] [PubMed] [Google Scholar]
  26. Carter W. G., Kaur P., Gil S. G., Gahr P. J., Wayner E. A. Distinct functions for integrins alpha 3 beta 1 in focal adhesions and alpha 6 beta 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes. J Cell Biol. 1990 Dec;111(6 Pt 2):3141–3154. doi: 10.1083/jcb.111.6.3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Carter W. G., Ryan M. C., Gahr P. J. Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes. Cell. 1991 May 17;65(4):599–610. doi: 10.1016/0092-8674(91)90092-d. [DOI] [PubMed] [Google Scholar]
  28. Champliaud M. F., Lunstrum G. P., Rousselle P., Nishiyama T., Keene D. R., Burgeson R. E. Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol. 1996 Mar;132(6):1189–1198. doi: 10.1083/jcb.132.6.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Chen M., Marinkovich M. P., Veis A., Cai X., Rao C. N., O'Toole E. A., Woodley D. T. Interactions of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin. J Biol Chem. 1997 Jun 6;272(23):14516–14522. doi: 10.1074/jbc.272.23.14516. [DOI] [PubMed] [Google Scholar]
  30. Cheng Y. S., Champliaud M. F., Burgeson R. E., Marinkovich M. P., Yurchenco P. D. Self-assembly of laminin isoforms. J Biol Chem. 1997 Dec 12;272(50):31525–31532. doi: 10.1074/jbc.272.50.31525. [DOI] [PubMed] [Google Scholar]
  31. Christiano A. M., Rosenbaum L. M., Chung-Honet L. C., Parente M. G., Woodley D. T., Pan T. C., Zhang R. Z., Chu M. L., Burgeson R. E., Uitto J. The large non-collagenous domain (NC-1) of type VII collagen is amino-terminal and chimeric. Homology to cartilage matrix protein, the type III domains of fibronectin and the A domains of von Willebrand factor. Hum Mol Genet. 1992 Oct;1(7):475–481. doi: 10.1093/hmg/1.7.475. [DOI] [PubMed] [Google Scholar]
  32. Clark E. A., Brugge J. S. Integrins and signal transduction pathways: the road taken. Science. 1995 Apr 14;268(5208):233–239. doi: 10.1126/science.7716514. [DOI] [PubMed] [Google Scholar]
  33. Cohen M. W., Jacobson C., Yurchenco P. D., Morris G. E., Carbonetto S. Laminin-induced clustering of dystroglycan on embryonic muscle cells: comparison with agrin-induced clustering. J Cell Biol. 1997 Mar 10;136(5):1047–1058. doi: 10.1083/jcb.136.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Colognato-Pyke H., O'Rear J. J., Yamada Y., Carbonetto S., Cheng Y. S., Yurchenco P. D. Mapping of network-forming, heparin-binding, and alpha 1 beta 1 integrin-recognition sites within the alpha-chain short arm of laminin-1. J Biol Chem. 1995 Apr 21;270(16):9398–9406. doi: 10.1074/jbc.270.16.9398. [DOI] [PubMed] [Google Scholar]
  35. Colognato H., MacCarrick M., O'Rear J. J., Yurchenco P. D. The laminin alpha2-chain short arm mediates cell adhesion through both the alpha1beta1 and alpha2beta1 integrins. J Biol Chem. 1997 Nov 14;272(46):29330–29336. doi: 10.1074/jbc.272.46.29330. [DOI] [PubMed] [Google Scholar]
  36. Cooper A. R., Kurkinen M., Taylor A., Hogan B. L. Studies on the biosynthesis of laminin by murine parietal endoderm cells. Eur J Biochem. 1981 Sep;119(1):189–197. doi: 10.1111/j.1432-1033.1981.tb05593.x. [DOI] [PubMed] [Google Scholar]
  37. Cooper A. R., MacQueen H. A. Subunits of laminin are differentially synthesized in mouse eggs and early embryos. Dev Biol. 1983 Apr;96(2):467–471. doi: 10.1016/0012-1606(83)90183-5. [DOI] [PubMed] [Google Scholar]
  38. De Luca M., Tamura R. N., Kajiji S., Bondanza S., Rossino P., Cancedda R., Marchisio P. C., Quaranta V. Polarized integrin mediates human keratinocyte adhesion to basal lamina. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6888–6892. doi: 10.1073/pnas.87.17.6888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Delwel G. O., Hogervorst F., Kuikman I., Paulsson M., Timpl R., Sonnenberg A. Expression and function of the cytoplasmic variants of the integrin alpha 6 subunit in transfected K562 cells. Activation-dependent adhesion and interaction with isoforms of laminin. J Biol Chem. 1993 Dec 5;268(34):25865–25875. [PubMed] [Google Scholar]
  40. Delwel G. O., de Melker A. A., Hogervorst F., Jaspars L. H., Fles D. L., Kuikman I., Lindblom A., Paulsson M., Timpl R., Sonnenberg A. Distinct and overlapping ligand specificities of the alpha 3A beta 1 and alpha 6A beta 1 integrins: recognition of laminin isoforms. Mol Biol Cell. 1994 Feb;5(2):203–215. doi: 10.1091/mbc.5.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Denzer A. J., Brandenberger R., Gesemann M., Chiquet M., Ruegg M. A. Agrin binds to the nerve-muscle basal lamina via laminin. J Cell Biol. 1997 May 5;137(3):671–683. doi: 10.1083/jcb.137.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Deutzmann R., Aumailley M., Wiedemann H., Pysny W., Timpl R., Edgar D. Cell adhesion, spreading and neurite stimulation by laminin fragment E8 depends on maintenance of secondary and tertiary structure in its rod and globular domain. Eur J Biochem. 1990 Jul 31;191(2):513–522. doi: 10.1111/j.1432-1033.1990.tb19151.x. [DOI] [PubMed] [Google Scholar]
  43. DiPersio C. M., Hodivala-Dilke K. M., Jaenisch R., Kreidberg J. A., Hynes R. O. alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol. 1997 May 5;137(3):729–742. doi: 10.1083/jcb.137.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. DiPersio C. M., Shah S., Hynes R. O. alpha 3A beta 1 integrin localizes to focal contacts in response to diverse extracellular matrix proteins. J Cell Sci. 1995 Jun;108(Pt 6):2321–2336. doi: 10.1242/jcs.108.6.2321. [DOI] [PubMed] [Google Scholar]
  45. Dogic D., Rousselle P., Aumailley M. Cell adhesion to laminin 1 or 5 induces isoform-specific clustering of integrins and other focal adhesion components. J Cell Sci. 1998 Mar;111(Pt 6):793–802. doi: 10.1242/jcs.111.6.793. [DOI] [PubMed] [Google Scholar]
  46. Domloge-Hultsch N., Gammon W. R., Briggaman R. A., Gil S. G., Carter W. G., Yancey K. B. Epiligrin, the major human keratinocyte integrin ligand, is a target in both an acquired autoimmune and an inherited subepidermal blistering skin disease. J Clin Invest. 1992 Oct;90(4):1628–1633. doi: 10.1172/JCI116033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Dowling J., Yu Q. C., Fuchs E. Beta4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol. 1996 Jul;134(2):559–572. doi: 10.1083/jcb.134.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Durbeej M., Ekblom P. Dystroglycan and laminins: glycoconjugates involved in branching epithelial morphogenesis. Exp Lung Res. 1997 Mar-Apr;23(2):109–118. doi: 10.3109/01902149709074024. [DOI] [PubMed] [Google Scholar]
  49. Durbeej M., Larsson E., Ibraghimov-Beskrovnaya O., Roberds S. L., Campbell K. P., Ekblom P. Non-muscle alpha-dystroglycan is involved in epithelial development. J Cell Biol. 1995 Jul;130(1):79–91. doi: 10.1083/jcb.130.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Dziadek M., Timpl R. Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells. Dev Biol. 1985 Oct;111(2):372–382. doi: 10.1016/0012-1606(85)90491-9. [DOI] [PubMed] [Google Scholar]
  51. Eady R. A. Babes, blisters and basement membranes: from sticky molecules to epidermolysis bullosa. Clin Exp Dermatol. 1987 May;12(3):161–170. doi: 10.1111/j.1365-2230.1987.tb01886.x. [DOI] [PubMed] [Google Scholar]
  52. Ehrig K., Leivo I., Argraves W. S., Ruoslahti E., Engvall E. Merosin, a tissue-specific basement membrane protein, is a laminin-like protein. Proc Natl Acad Sci U S A. 1990 May;87(9):3264–3268. doi: 10.1073/pnas.87.9.3264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Ekblom P., Klein G., Ekblom M., Sorokin L. Laminin isoforms and their receptors in the developing kidney. Am J Kidney Dis. 1991 Jun;17(6):603–605. doi: 10.1016/s0272-6386(12)80329-5. [DOI] [PubMed] [Google Scholar]
  54. Ekblom P. Receptors for laminins during epithelial morphogenesis. Curr Opin Cell Biol. 1996 Oct;8(5):700–706. doi: 10.1016/s0955-0674(96)80112-8. [DOI] [PubMed] [Google Scholar]
  55. Engel J. Common structural motifs in proteins of the extracellular matrix. Curr Opin Cell Biol. 1991 Oct;3(5):779–785. doi: 10.1016/0955-0674(91)90050-9. [DOI] [PubMed] [Google Scholar]
  56. Engvall E., Earwicker D., Haaparanta T., Ruoslahti E., Sanes J. R. Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regul. 1990 Sep;1(10):731–740. doi: 10.1091/mbc.1.10.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Fox J. W., Mayer U., Nischt R., Aumailley M., Reinhardt D., Wiedemann H., Mann K., Timpl R., Krieg T., Engel J. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 1991 Nov;10(11):3137–3146. doi: 10.1002/j.1460-2075.1991.tb04875.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Fässler R., Pfaff M., Murphy J., Noegel A. A., Johansson S., Timpl R., Albrecht R. Lack of beta 1 integrin gene in embryonic stem cells affects morphology, adhesion, and migration but not integration into the inner cell mass of blastocysts. J Cell Biol. 1995 Mar;128(5):979–988. doi: 10.1083/jcb.128.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Galliano M. F., Aberdam D., Aguzzi A., Ortonne J. P., Meneguzzi G. Cloning and complete primary structure of the mouse laminin alpha 3 chain. Distinct expression pattern of the laminin alpha 3A and alpha 3B chain isoforms. J Biol Chem. 1995 Sep 15;270(37):21820–21826. doi: 10.1074/jbc.270.37.21820. [DOI] [PubMed] [Google Scholar]
  60. Gayraud B., Höpfner B., Jassim A., Aumailley M., Bruckner-Tuderman L. Characterization of a 50-kDa component of epithelial basement membranes using GDA-J/F3 monoclonal antibody. J Biol Chem. 1997 Apr 4;272(14):9531–9538. doi: 10.1074/jbc.272.14.9531. [DOI] [PubMed] [Google Scholar]
  61. Gee S. H., Blacher R. W., Douville P. J., Provost P. R., Yurchenco P. D., Carbonetto S. Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J Biol Chem. 1993 Jul 15;268(20):14972–14980. [PubMed] [Google Scholar]
  62. Gehlsen K. R., Sriramarao P., Furcht L. T., Skubitz A. P. A synthetic peptide derived from the carboxy terminus of the laminin A chain represents a binding site for the alpha 3 beta 1 integrin. J Cell Biol. 1992 Apr;117(2):449–459. doi: 10.1083/jcb.117.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Georges-Labouesse E., Messaddeq N., Yehia G., Cadalbert L., Dierich A., Le Meur M. Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet. 1996 Jul;13(3):370–373. doi: 10.1038/ng0796-370. [DOI] [PubMed] [Google Scholar]
  64. Gerl M., Mann K., Aumailley M., Timpl R. Localization of a major nidogen-binding site to domain III of laminin B2 chain. Eur J Biochem. 1991 Nov 15;202(1):167–174. doi: 10.1111/j.1432-1033.1991.tb16358.x. [DOI] [PubMed] [Google Scholar]
  65. Giannelli G., Falk-Marzillier J., Schiraldi O., Stetler-Stevenson W. G., Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997 Jul 11;277(5323):225–228. doi: 10.1126/science.277.5323.225. [DOI] [PubMed] [Google Scholar]
  66. Goodman S. L., Aumailley M., von der Mark H. Multiple cell surface receptors for the short arms of laminin: alpha 1 beta 1 integrin and RGD-dependent proteins mediate cell attachment only to domains III in murine tumor laminin. J Cell Biol. 1991 May;113(4):931–941. doi: 10.1083/jcb.113.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Goodman S. L., Deutzmann R., von der Mark K. Two distinct cell-binding domains in laminin can independently promote nonneuronal cell adhesion and spreading. J Cell Biol. 1987 Jul;105(1):589–598. doi: 10.1083/jcb.105.1.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Guicheney P., Vignier N., Helbling-Leclerc A., Nissinen M., Zhang X., Cruaud C., Lambert J. C., Richelme C., Topaloglu H., Merlini L. Genetics of laminin alpha 2 chain (or merosin) deficient congenital muscular dystrophy: from identification of mutations to prenatal diagnosis. Neuromuscul Disord. 1997 May;7(3):180–186. doi: 10.1016/s0960-8966(97)00460-4. [DOI] [PubMed] [Google Scholar]
  69. Hall D. E., Reichardt L. F., Crowley E., Holley B., Moezzi H., Sonnenberg A., Damsky C. H. The alpha 1/beta 1 and alpha 6/beta 1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J Cell Biol. 1990 Jun;110(6):2175–2184. doi: 10.1083/jcb.110.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Hall H., Deutzmann R., Timpl R., Vaughan L., Schmitz B., Schachner M. HNK-1 carbohydrate-mediated cell adhesion to laminin-1 is different from heparin-mediated and sulfatide-mediated cell adhesion. Eur J Biochem. 1997 May 15;246(1):233–242. doi: 10.1111/j.1432-1033.1997.t01-1-00233.x. [DOI] [PubMed] [Google Scholar]
  71. Helbling-Leclerc A., Zhang X., Topaloglu H., Cruaud C., Tesson F., Weissenbach J., Tomé F. M., Schwartz K., Fardeau M., Tryggvason K. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet. 1995 Oct;11(2):216–218. doi: 10.1038/ng1095-216. [DOI] [PubMed] [Google Scholar]
  72. Henchcliffe C., García-Alonso L., Tang J., Goodman C. S. Genetic analysis of laminin A reveals diverse functions during morphogenesis in Drosophila. Development. 1993 Jun;118(2):325–337. doi: 10.1242/dev.118.2.325. [DOI] [PubMed] [Google Scholar]
  73. Henry M. D., Campbell K. P. Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Curr Opin Cell Biol. 1996 Oct;8(5):625–631. doi: 10.1016/s0955-0674(96)80103-7. [DOI] [PubMed] [Google Scholar]
  74. Hirako Y., Usukura J., Nishizawa Y., Owaribe K. Demonstration of the molecular shape of BP180, a 180-kDa bullous pemphigoid antigen and its potential for trimer formation. J Biol Chem. 1996 Jun 7;271(23):13739–13745. doi: 10.1074/jbc.271.23.13739. [DOI] [PubMed] [Google Scholar]
  75. Hogan B. L., Cooper A. R., Kurkinen M. Incorporation into Reichert's membrane of laminin-like extracellular proteins synthesized by parietal endoderm cells of the mouse embryo. Dev Biol. 1980 Dec;80(2):289–300. doi: 10.1016/0012-1606(80)90405-4. [DOI] [PubMed] [Google Scholar]
  76. Hopf C., Hoch W. Agrin binding to alpha-dystroglycan. Domains of agrin necessary to induce acetylcholine receptor clustering are overlapping but not identical to the alpha-dystroglycan-binding region. J Biol Chem. 1996 Mar 1;271(9):5231–5236. doi: 10.1074/jbc.271.9.5231. [DOI] [PubMed] [Google Scholar]
  77. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  78. Ibraghimov-Beskrovnaya O., Milatovich A., Ozcelik T., Yang B., Koepnick K., Francke U., Campbell K. P. Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum Mol Genet. 1993 Oct;2(10):1651–1657. doi: 10.1093/hmg/2.10.1651. [DOI] [PubMed] [Google Scholar]
  79. Jewell K., Kapron-Bras C., Jeevaratnam P., Dedhar S. Stimulation of tyrosine phosphorylation of distinct proteins in response to antibody-mediated ligation and clustering of alpha 3 and alpha 6 integrins. J Cell Sci. 1995 Mar;108(Pt 3):1165–1174. doi: 10.1242/jcs.108.3.1165. [DOI] [PubMed] [Google Scholar]
  80. Kadoya Y., Salmivirta K., Talts J. F., Kadoya K., Mayer U., Timpl R., Ekblom P. Importance of nidogen binding to laminin gamma1 for branching epithelial morphogenesis of the submandibular gland. Development. 1997 Feb;124(3):683–691. doi: 10.1242/dev.124.3.683. [DOI] [PubMed] [Google Scholar]
  81. Kivirikko S., McGrath J. A., Baudoin C., Aberdam D., Ciatti S., Dunnill M. G., McMillan J. R., Eady R. A., Ortonne J. P., Meneguzzi G. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in lethal (Herlitz) junctional epidermolysis bullosa. Hum Mol Genet. 1995 May;4(5):959–962. doi: 10.1093/hmg/4.5.959. [DOI] [PubMed] [Google Scholar]
  82. Klein G., Langegger M., Timpl R., Ekblom P. Role of laminin A chain in the development of epithelial cell polarity. Cell. 1988 Oct 21;55(2):331–341. doi: 10.1016/0092-8674(88)90056-6. [DOI] [PubMed] [Google Scholar]
  83. Kramer R. H., Cheng Y. F., Clyman R. Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin. J Cell Biol. 1990 Sep;111(3):1233–1243. doi: 10.1083/jcb.111.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Kramer R. H., Vu M. P., Cheng Y. F., Ramos D. M., Timpl R., Waleh N. Laminin-binding integrin alpha 7 beta 1: functional characterization and expression in normal and malignant melanocytes. Cell Regul. 1991 Oct;2(10):805–817. doi: 10.1091/mbc.2.10.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Kreidberg J. A., Donovan M. J., Goldstein S. L., Rennke H., Shepherd K., Jones R. C., Jaenisch R. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development. 1996 Nov;122(11):3537–3547. doi: 10.1242/dev.122.11.3537. [DOI] [PubMed] [Google Scholar]
  86. Kuster J. E., Guarnieri M. H., Ault J. G., Flaherty L., Swiatek P. J. IAP insertion in the murine LamB3 gene results in junctional epidermolysis bullosa. Mamm Genome. 1997 Sep;8(9):673–681. doi: 10.1007/s003359900535. [DOI] [PubMed] [Google Scholar]
  87. Languino L. R., Gehlsen K. R., Wayner E., Carter W. G., Engvall E., Ruoslahti E. Endothelial cells use alpha 2 beta 1 integrin as a laminin receptor. J Cell Biol. 1989 Nov;109(5):2455–2462. doi: 10.1083/jcb.109.5.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Lentz S. I., Miner J. H., Sanes J. R., Snider W. D. Distribution of the ten known laminin chains in the pathways and targets of developing sensory axons. J Comp Neurol. 1997 Feb 24;378(4):547–561. doi: 10.1002/(sici)1096-9861(19970224)378:4<547::aid-cne9>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  89. Li K., Tamai K., Tan E. M., Uitto J. Cloning of type XVII collagen. Complementary and genomic DNA sequences of mouse 180-kilodalton bullous pemphigoid antigen (BPAG2) predict an interrupted collagenous domain, a transmembrane segment, and unusual features in the 5'-end of the gene and the 3'-untranslated region of the mRNA. J Biol Chem. 1993 Apr 25;268(12):8825–8834. [PubMed] [Google Scholar]
  90. Lindblom A., Marsh T., Fauser C., Engel J., Paulsson M. Characterization of native laminin from bovine kidney and comparison with other laminin variants. Eur J Biochem. 1994 Jan 15;219(1-2):383–392. doi: 10.1111/j.1432-1033.1994.tb19950.x. [DOI] [PubMed] [Google Scholar]
  91. Mainiero F., Murgia C., Wary K. K., Curatola A. M., Pepe A., Blumemberg M., Westwick J. K., Der C. J., Giancotti F. G. The coupling of alpha6beta4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO J. 1997 May 1;16(9):2365–2375. doi: 10.1093/emboj/16.9.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Marinkovich M. P., Lunstrum G. P., Burgeson R. E. The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J Biol Chem. 1992 Sep 5;267(25):17900–17906. [PubMed] [Google Scholar]
  93. Marinkovich M. P., Lunstrum G. P., Keene D. R., Burgeson R. E. The dermal-epidermal junction of human skin contains a novel laminin variant. J Cell Biol. 1992 Nov;119(3):695–703. doi: 10.1083/jcb.119.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Martin G. R., Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85. doi: 10.1146/annurev.cb.03.110187.000421. [DOI] [PubMed] [Google Scholar]
  95. Masunaga T., Shimizu H., Yee C., Borradori L., Lazarova Z., Nishikawa T., Yancey K. B. The extracellular domain of BPAG2 localizes to anchoring filaments and its carboxyl terminus extends to the lamina densa of normal human epidermal basement membrane. J Invest Dermatol. 1997 Aug;109(2):200–206. doi: 10.1111/1523-1747.ep12319337. [DOI] [PubMed] [Google Scholar]
  96. Matsumura K., Yamada H., Saito F., Sunada Y., Shimizu T. The role of dystroglycan, a novel receptor of laminin and agrin, in cell differentiation. Histol Histopathol. 1997 Jan;12(1):195–203. [PubMed] [Google Scholar]
  97. Mayer U., Nischt R., Pöschl E., Mann K., Fukuda K., Gerl M., Yamada Y., Timpl R. A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J. 1993 May;12(5):1879–1885. doi: 10.1002/j.1460-2075.1993.tb05836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Mayer U., Pöschl E., Gerecke D. R., Wagman D. W., Burgeson R. E., Timpl R. Low nidogen affinity of laminin-5 can be attributed to two serine residues in EGF-like motif gamma 2III4. FEBS Lett. 1995 May 29;365(2-3):129–132. doi: 10.1016/0014-5793(95)00438-f. [DOI] [PubMed] [Google Scholar]
  99. Mayer U., Saher G., Fässler R., Bornemann A., Echtermeyer F., von der Mark H., Miosge N., Pöschl E., von der Mark K. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet. 1997 Nov;17(3):318–323. doi: 10.1038/ng1197-318. [DOI] [PubMed] [Google Scholar]
  100. McGrath J. A., Gatalica B., Christiano A. M., Li K., Owaribe K., McMillan J. R., Eady R. A., Uitto J. Mutations in the 180-kD bullous pemphigoid antigen (BPAG2), a hemidesmosomal transmembrane collagen (COL17A1), in generalized atrophic benign epidermolysis bullosa. Nat Genet. 1995 Sep;11(1):83–86. doi: 10.1038/ng0995-83. [DOI] [PubMed] [Google Scholar]
  101. McGrath J. A., Kivirikko S., Ciatti S., Moss C., Dunnill G. S., Eady R. A., Rodeck C. H., Christiano A. M., Uitto J. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in Herlitz junctional epidermolysis bullosa: prenatal exclusion in a fetus at risk. Genomics. 1995 Sep 1;29(1):282–284. doi: 10.1006/geno.1995.1246. [DOI] [PubMed] [Google Scholar]
  102. McGrath J. A., Pulkkinen L., Christiano A. M., Leigh I. M., Eady R. A., Uitto J. Altered laminin 5 expression due to mutations in the gene encoding the beta 3 chain (LAMB3) in generalized atrophic benign epidermolysis bullosa. J Invest Dermatol. 1995 Apr;104(4):467–474. doi: 10.1111/1523-1747.ep12605904. [DOI] [PubMed] [Google Scholar]
  103. Miner J. H., Lewis R. M., Sanes J. R. Molecular cloning of a novel laminin chain, alpha 5, and widespread expression in adult mouse tissues. J Biol Chem. 1995 Dec 1;270(48):28523–28526. doi: 10.1074/jbc.270.48.28523. [DOI] [PubMed] [Google Scholar]
  104. Miner J. H., Patton B. L., Lentz S. I., Gilbert D. J., Snider W. D., Jenkins N. A., Copeland N. G., Sanes J. R. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. J Cell Biol. 1997 May 5;137(3):685–701. doi: 10.1083/jcb.137.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Miyagoe Y., Hanaoka K., Nonaka I., Hayasaka M., Nabeshima Y., Arahata K., Nabeshima Y., Takeda S. Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett. 1997 Sep 22;415(1):33–39. doi: 10.1016/s0014-5793(97)01007-7. [DOI] [PubMed] [Google Scholar]
  106. Mizushima H., Takamura H., Miyagi Y., Kikkawa Y., Yamanaka N., Yasumitsu H., Misugi K., Miyazaki K. Identification of integrin-dependent and -independent cell adhesion domains in COOH-terminal globular region of laminin-5 alpha 3 chain. Cell Growth Differ. 1997 Sep;8(9):979–987. [PubMed] [Google Scholar]
  107. Moser T. L., Enghild J. J., Pizzo S. V., Stack M. S. The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator. J Biol Chem. 1993 Sep 5;268(25):18917–18923. [PubMed] [Google Scholar]
  108. Niessen C. M., Hulsman E. H., Rots E. S., Sánchez-Aparicio P., Sonnenberg A. Integrin alpha 6 beta 4 forms a complex with the cytoskeletal protein HD1 and induces its redistribution in transfected COS-7 cells. Mol Biol Cell. 1997 Apr;8(4):555–566. doi: 10.1091/mbc.8.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Niessen C. M., van der Raaij-Helmer M. H., Hulsman E. H., van der Neut R., Jonkman M. F., Sonnenberg A. Deficiency of the integrin beta 4 subunit in junctional epidermolysis bullosa with pyloric atresia: consequences for hemidesmosome formation and adhesion properties. J Cell Sci. 1996 Jul;109(Pt 7):1695–1706. doi: 10.1242/jcs.109.7.1695. [DOI] [PubMed] [Google Scholar]
  110. Niimi T., Kitagawa Y. Distinct roles of mouse laminin beta1 long arm domains for alpha1beta1gamma1 trimer formation. FEBS Lett. 1997 Jan 2;400(1):71–74. doi: 10.1016/s0014-5793(96)01355-5. [DOI] [PubMed] [Google Scholar]
  111. Nissinen M., Helbling-Leclerc A., Zhang X., Evangelista T., Topaloglu H., Cruaud C., Weissenbach J., Fardeau M., Tomé F. M., Schwartz K. Substitution of a conserved cysteine-996 in a cysteine-rich motif of the laminin alpha2-chain in congenital muscular dystrophy with partial deficiency of the protein. Am J Hum Genet. 1996 Jun;58(6):1177–1184. [PMC free article] [PubMed] [Google Scholar]
  112. Noakes P. G., Gautam M., Mudd J., Sanes J. R., Merlie J. P. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature. 1995 Mar 16;374(6519):258–262. doi: 10.1038/374258a0. [DOI] [PubMed] [Google Scholar]
  113. Noakes P. G., Miner J. H., Gautam M., Cunningham J. M., Sanes J. R., Merlie J. P. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet. 1995 Aug;10(4):400–406. doi: 10.1038/ng0895-400. [DOI] [PubMed] [Google Scholar]
  114. Nomizu M., Kuratomi Y., Song S. Y., Ponce M. L., Hoffman M. P., Powell S. K., Miyoshi K., Otaka A., Kleinman H. K., Yamada Y. Identification of cell binding sequences in mouse laminin gamma1 chain by systematic peptide screening. J Biol Chem. 1997 Dec 19;272(51):32198–32205. doi: 10.1074/jbc.272.51.32198. [DOI] [PubMed] [Google Scholar]
  115. Noonan D. M., Fulle A., Valente P., Cai S., Horigan E., Sasaki M., Yamada Y., Hassell J. R. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J Biol Chem. 1991 Dec 5;266(34):22939–22947. [PubMed] [Google Scholar]
  116. Nurcombe V., Aumailley M., Timpl R., Edgar D. The high-affinity binding of laminin to cells. Assignation of a major cell-binding site to the long arm of laminin and of a latent cell-binding site to its short arms. Eur J Biochem. 1989 Mar 1;180(1):9–14. doi: 10.1111/j.1432-1033.1989.tb14608.x. [DOI] [PubMed] [Google Scholar]
  117. Ott U., Odermatt E., Engel J., Furthmayr H., Timpl R. Protease resistance and conformation of laminin. Eur J Biochem. 1982 Mar;123(1):63–72. doi: 10.1111/j.1432-1033.1982.tb06499.x. [DOI] [PubMed] [Google Scholar]
  118. Pall E. A., Bolton K. M., Ervasti J. M. Differential heparin inhibition of skeletal muscle alpha-dystroglycan binding to laminins. J Biol Chem. 1996 Feb 16;271(7):3817–3821. doi: 10.1074/jbc.271.7.3817. [DOI] [PubMed] [Google Scholar]
  119. Parente M. G., Chung L. C., Ryynänen J., Woodley D. T., Wynn K. C., Bauer E. A., Mattei M. G., Chu M. L., Uitto J. Human type VII collagen: cDNA cloning and chromosomal mapping of the gene. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6931–6935. doi: 10.1073/pnas.88.16.6931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Paulsson M., Aumailley M., Deutzmann R., Timpl R., Beck K., Engel J. Laminin-nidogen complex. Extraction with chelating agents and structural characterization. Eur J Biochem. 1987 Jul 1;166(1):11–19. doi: 10.1111/j.1432-1033.1987.tb13476.x. [DOI] [PubMed] [Google Scholar]
  121. Paulsson M., Saladin K., Engvall E. Structure of laminin variants. The 300-kDa chains of murine and bovine heart laminin are related to the human placenta merosin heavy chain and replace the a chain in some laminin variants. J Biol Chem. 1991 Sep 15;266(26):17545–17551. [PubMed] [Google Scholar]
  122. Paulsson M., Saladin K. Mouse heart laminin. Purification of the native protein and structural comparison with Engelbreth-Holm-Swarm tumor laminin. J Biol Chem. 1989 Nov 5;264(31):18726–18732. [PubMed] [Google Scholar]
  123. Paulsson M. The role of Ca2+ binding in the self-aggregation of laminin-nidogen complexes. J Biol Chem. 1988 Apr 15;263(11):5425–5430. [PubMed] [Google Scholar]
  124. Paulsson M., Yurchenco P. D., Ruben G. C., Engel J., Timpl R. Structure of low density heparan sulfate proteoglycan isolated from a mouse tumor basement membrane. J Mol Biol. 1987 Sep 20;197(2):297–313. doi: 10.1016/0022-2836(87)90125-2. [DOI] [PubMed] [Google Scholar]
  125. Pfaff M., Göhring W., Brown J. C., Timpl R. Binding of purified collagen receptors (alpha 1 beta 1, alpha 2 beta 1) and RGD-dependent integrins to laminins and laminin fragments. Eur J Biochem. 1994 Nov 1;225(3):975–984. doi: 10.1111/j.1432-1033.1994.0975b.x. [DOI] [PubMed] [Google Scholar]
  126. Pulkkinen L., Christiano A. M., Airenne T., Haakana H., Tryggvason K., Uitto J. Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa. Nat Genet. 1994 Mar;6(3):293–297. doi: 10.1038/ng0394-293. [DOI] [PubMed] [Google Scholar]
  127. Pulkkinen L., Christiano A. M., Gerecke D., Wagman D. W., Burgeson R. E., Pittelkow M. R., Uitto J. A homozygous nonsense mutation in the beta 3 chain gene of laminin 5 (LAMB3) in Herlitz junctional epidermolysis bullosa. Genomics. 1994 Nov 15;24(2):357–360. doi: 10.1006/geno.1994.1627. [DOI] [PubMed] [Google Scholar]
  128. Pulkkinen L., Kimonis V. E., Xu Y., Spanou E. N., McLean W. H., Uitto J. Homozygous alpha6 integrin mutation in junctional epidermolysis bullosa with congenital duodenal atresia. Hum Mol Genet. 1997 May;6(5):669–674. doi: 10.1093/hmg/6.5.669. [DOI] [PubMed] [Google Scholar]
  129. Pulkkinen L., Kurtz K., Xu Y., Bruckner-Tuderman L., Uitto J. Genomic organization of the integrin beta 4 gene (ITGB4): a homozygous splice-site mutation in a patient with junctional epidermolysis bullosa associated with pyloric atresia. Lab Invest. 1997 Jun;76(6):823–833. [PubMed] [Google Scholar]
  130. Pöschl E., Mayer U., Stetefeld J., Baumgartner R., Holak T. A., Huber R., Timpl R. Site-directed mutagenesis and structural interpretation of the nidogen binding site of the laminin gamma1 chain. EMBO J. 1996 Oct 1;15(19):5154–5159. [PMC free article] [PubMed] [Google Scholar]
  131. Rao C. N., Margulies I. M., Tralka T. S., Terranova V. P., Madri J. A., Liotta L. A. Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment. J Biol Chem. 1982 Aug 25;257(16):9740–9744. [PubMed] [Google Scholar]
  132. Reinhardt D., Mann K., Nischt R., Fox J. W., Chu M. L., Krieg T., Timpl R. Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J Biol Chem. 1993 May 25;268(15):10881–10887. [PubMed] [Google Scholar]
  133. Rousselle P., Aumailley M. Kalinin is more efficient than laminin in promoting adhesion of primary keratinocytes and some other epithelial cells and has a different requirement for integrin receptors. J Cell Biol. 1994 Apr;125(1):205–214. doi: 10.1083/jcb.125.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Rousselle P., Golbik R., van der Rest M., Aumailley M. Structural requirement for cell adhesion to kalinin (laminin-5). J Biol Chem. 1995 Jun 9;270(23):13766–13770. doi: 10.1074/jbc.270.23.13766. [DOI] [PubMed] [Google Scholar]
  135. Rousselle P., Keene D. R., Ruggiero F., Champliaud M. F., Rest M., Burgeson R. E. Laminin 5 binds the NC-1 domain of type VII collagen. J Cell Biol. 1997 Aug 11;138(3):719–728. doi: 10.1083/jcb.138.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Rousselle P., Lunstrum G. P., Keene D. R., Burgeson R. E. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol. 1991 Aug;114(3):567–576. doi: 10.1083/jcb.114.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Rupp F., Payan D. G., Magill-Solc C., Cowan D. M., Scheller R. H. Structure and expression of a rat agrin. Neuron. 1991 May;6(5):811–823. doi: 10.1016/0896-6273(91)90177-2. [DOI] [PubMed] [Google Scholar]
  138. Ruzzi L., Gagnoux-Palacios L., Pinola M., Belli S., Meneguzzi G., D'Alessio M., Zambruno G. A homozygous mutation in the integrin alpha6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest. 1997 Jun 15;99(12):2826–2831. doi: 10.1172/JCI119474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Ryan M. C., Tizard R., VanDevanter D. R., Carter W. G. Cloning of the LamA3 gene encoding the alpha 3 chain of the adhesive ligand epiligrin. Expression in wound repair. J Biol Chem. 1994 Sep 9;269(36):22779–22787. [PubMed] [Google Scholar]
  140. Sanes J. R., Engvall E., Butkowski R., Hunter D. D. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol. 1990 Oct;111(4):1685–1699. doi: 10.1083/jcb.111.4.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Sasaki T., Göhring W., Pan T. C., Chu M. L., Timpl R. Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol. 1995 Dec 15;254(5):892–899. doi: 10.1006/jmbi.1995.0664. [DOI] [PubMed] [Google Scholar]
  142. Sasaki T., Kostka G., Göhring W., Wiedemann H., Mann K., Chu M. L., Timpl R. Structural characterization of two variants of fibulin-1 that differ in nidogen affinity. J Mol Biol. 1995 Jan 20;245(3):241–250. doi: 10.1006/jmbi.1994.0020. [DOI] [PubMed] [Google Scholar]
  143. Schuler F., Sorokin L. M. Expression of laminin isoforms in mouse myogenic cells in vitro and in vivo. J Cell Sci. 1995 Dec;108(Pt 12):3795–3805. doi: 10.1242/jcs.108.12.3795. [DOI] [PubMed] [Google Scholar]
  144. Shimizu H., Masunaga T., Ishiko A., Matsumura K., Hashimoto T., Nishikawa T., Domloge-Hultsch N., Lazarova Z., Yancey K. B. Autoantibodies from patients with cicatricial pemphigoid target different sites in epidermal basement membrane. J Invest Dermatol. 1995 Mar;104(3):370–373. doi: 10.1111/1523-1747.ep12665840. [DOI] [PubMed] [Google Scholar]
  145. Simo P., Bouziges F., Lissitzky J. C., Sorokin L., Kedinger M., Simon-Assmann P. Dual and asynchronous deposition of laminin chains at the epithelial-mesenchymal interface in the gut. Gastroenterology. 1992 Jun;102(6):1835–1845. doi: 10.1016/0016-5085(92)90303-g. [DOI] [PubMed] [Google Scholar]
  146. Sonnenberg A., Calafat J., Janssen H., Daams H., van der Raaij-Helmer L. M., Falcioni R., Kennel S. J., Aplin J. D., Baker J., Loizidou M. Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol. 1991 May;113(4):907–917. doi: 10.1083/jcb.113.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Sonnenberg A., Gehlsen K. R., Aumailley M., Timpl R. Isolation of alpha 6 beta 1 integrins from platelets and adherent cells by affinity chromatography on mouse laminin fragment E8 and human laminin pepsin fragment. Exp Cell Res. 1991 Dec;197(2):234–244. doi: 10.1016/0014-4827(91)90428-w. [DOI] [PubMed] [Google Scholar]
  148. Sonnenberg A., Linders C. J., Modderman P. W., Damsky C. H., Aumailley M., Timpl R. Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that alpha 6 beta 1 but not alpha 6 beta 4 functions as a major receptor for fragment E8. J Cell Biol. 1990 Jun;110(6):2145–2155. doi: 10.1083/jcb.110.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Sorokin L. M., Conzelmann S., Ekblom P., Battaglia C., Aumailley M., Timpl R. Monoclonal antibodies against laminin A chain fragment E3 and their effects on binding to cells and proteoglycan and on kidney development. Exp Cell Res. 1992 Jul;201(1):137–144. doi: 10.1016/0014-4827(92)90357-e. [DOI] [PubMed] [Google Scholar]
  150. Sorokin L. M., Pausch F., Frieser M., Kröger S., Ohage E., Deutzmann R. Developmental regulation of the laminin alpha5 chain suggests a role in epithelial and endothelial cell maturation. Dev Biol. 1997 Sep 15;189(2):285–300. doi: 10.1006/dbio.1997.8668. [DOI] [PubMed] [Google Scholar]
  151. Sorokin L., Girg W., Göpfert T., Hallmann R., Deutzmann R. Expression of novel 400-kDa laminin chains by mouse and bovine endothelial cells. Eur J Biochem. 1994 Jul 15;223(2):603–610. doi: 10.1111/j.1432-1033.1994.tb19031.x. [DOI] [PubMed] [Google Scholar]
  152. Sorokin L., Sonnenberg A., Aumailley M., Timpl R., Ekblom P. Recognition of the laminin E8 cell-binding site by an integrin possessing the alpha 6 subunit is essential for epithelial polarization in developing kidney tubules. J Cell Biol. 1990 Sep;111(3):1265–1273. doi: 10.1083/jcb.111.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Stephens L. E., Sutherland A. E., Klimanskaya I. V., Andrieux A., Meneses J., Pedersen R. A., Damsky C. H. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 1995 Aug 1;9(15):1883–1895. doi: 10.1101/gad.9.15.1883. [DOI] [PubMed] [Google Scholar]
  154. Stetefeld J., Mayer U., Timpl R., Huber R. Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin gamma1 chain harboring the nidogen binding site. J Mol Biol. 1996 Apr 5;257(3):644–657. doi: 10.1006/jmbi.1996.0191. [DOI] [PubMed] [Google Scholar]
  155. Sunada Y., Bernier S. M., Kozak C. A., Yamada Y., Campbell K. P. Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M chain gene to dy locus. J Biol Chem. 1994 May 13;269(19):13729–13732. [PubMed] [Google Scholar]
  156. Sung U., O'Rear J. J., Yurchenco P. D. Cell and heparin binding in the distal long arm of laminin: identification of active and cryptic sites with recombinant and hybrid glycoprotein. J Cell Biol. 1993 Dec;123(5):1255–1268. doi: 10.1083/jcb.123.5.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Takada Y., Murphy E., Pil P., Chen C., Ginsberg M. H., Hemler M. E. Molecular cloning and expression of the cDNA for alpha 3 subunit of human alpha 3 beta 1 (VLA-3), an integrin receptor for fibronectin, laminin, and collagen. J Cell Biol. 1991 Oct;115(1):257–266. doi: 10.1083/jcb.115.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Takizawa Y., Shimizu H., Nishikawa T., Hatta N., Pulkkinen L., Uitto J. Novel ITGB4 mutations in a patient with junctional epidermolysis bullosa-pyloric atresia syndrome and altered basement membrane zone immunofluorescence for the alpha6beta4 integrin. J Invest Dermatol. 1997 Jun;108(6):943–946. doi: 10.1111/1523-1747.ep12296240. [DOI] [PubMed] [Google Scholar]
  159. Taraboletti G., Rao C. N., Krutzsch H. C., Liotta L. A., Roberts D. D. Sulfatide-binding domain of the laminin A chain. J Biol Chem. 1990 Jul 25;265(21):12253–12258. [PubMed] [Google Scholar]
  160. Terranova V. P., Rohrbach D. H., Martin G. R. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell. 1980 Dec;22(3):719–726. doi: 10.1016/0092-8674(80)90548-6. [DOI] [PubMed] [Google Scholar]
  161. Thomas T., Dziadek M. Genes coding for basement membrane glycoproteins laminin, nidogen, and collagen IV are differentially expressed in the nervous system and by epithelial, endothelial, and mesenchymal cells of the mouse embryo. Exp Cell Res. 1993 Sep;208(1):54–67. doi: 10.1006/excr.1993.1222. [DOI] [PubMed] [Google Scholar]
  162. Tiger C. F., Champliaud M. F., Pedrosa-Domellof F., Thornell L. E., Ekblom P., Gullberg D. Presence of laminin alpha5 chain and lack of laminin alpha1 chain during human muscle development and in muscular dystrophies. J Biol Chem. 1997 Nov 7;272(45):28590–28595. doi: 10.1074/jbc.272.45.28590. [DOI] [PubMed] [Google Scholar]
  163. Timpl R., Johansson S., van Delden V., Oberbäumer I., Hök M. Characterization of protease-resistant fragments of laminin mediating attachment and spreading of rat hepatocytes. J Biol Chem. 1983 Jul 25;258(14):8922–8927. [PubMed] [Google Scholar]
  164. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  165. Timpl R., Wiedemann H., van Delden V., Furthmayr H., Kühn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981 Nov;120(2):203–211. doi: 10.1111/j.1432-1033.1981.tb05690.x. [DOI] [PubMed] [Google Scholar]
  166. Tomaselli K. J., Hall D. E., Flier L. A., Gehlsen K. R., Turner D. C., Carbonetto S., Reichardt L. F. A neuronal cell line (PC12) expresses two beta 1-class integrins-alpha 1 beta 1 and alpha 3 beta 1-that recognize different neurite outgrowth-promoting domains in laminin. Neuron. 1990 Nov;5(5):651–662. doi: 10.1016/0896-6273(90)90219-6. [DOI] [PubMed] [Google Scholar]
  167. Tomé F. M., Evangelista T., Leclerc A., Sunada Y., Manole E., Estournet B., Barois A., Campbell K. P., Fardeau M. Congenital muscular dystrophy with merosin deficiency. C R Acad Sci III. 1994 Apr;317(4):351–357. [PubMed] [Google Scholar]
  168. Tran H., VanDusen W. J., Argraves W. S. The self-association and fibronectin-binding sites of fibulin-1 map to calcium-binding epidermal growth factor-like domains. J Biol Chem. 1997 Sep 5;272(36):22600–22606. doi: 10.1074/jbc.272.36.22600. [DOI] [PubMed] [Google Scholar]
  169. Tryggvason K. The laminin family. Curr Opin Cell Biol. 1993 Oct;5(5):877–882. doi: 10.1016/0955-0674(93)90038-r. [DOI] [PubMed] [Google Scholar]
  170. Tsen G., Halfter W., Kröger S., Cole G. J. Agrin is a heparan sulfate proteoglycan. J Biol Chem. 1995 Feb 17;270(7):3392–3399. doi: 10.1074/jbc.270.7.3392. [DOI] [PubMed] [Google Scholar]
  171. Ushkaryov Y. A., Petrenko A. G., Geppert M., Südhof T. C. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 1992 Jul 3;257(5066):50–56. doi: 10.1126/science.1621094. [DOI] [PubMed] [Google Scholar]
  172. Utani A., Nomizu M., Timpl R., Roller P. P., Yamada Y. Laminin chain assembly. Specific sequences at the C terminus of the long arm are required for the formation of specific double- and triple-stranded coiled-coil structures. J Biol Chem. 1994 Jul 22;269(29):19167–19175. [PubMed] [Google Scholar]
  173. Utani A., Nomizu M., Yamada Y. Fibulin-2 binds to the short arms of laminin-5 and laminin-1 via conserved amino acid sequences. J Biol Chem. 1997 Jan 31;272(5):2814–2820. doi: 10.1074/jbc.272.5.2814. [DOI] [PubMed] [Google Scholar]
  174. Vachon P. H., Loechel F., Xu H., Wewer U. M., Engvall E. Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival. J Cell Biol. 1996 Sep;134(6):1483–1497. doi: 10.1083/jcb.134.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Vailly J., Pulkkinen L., Christiano A. M., Tryggvason K., Uitto J., Ortonne J. P., Meneguzzi G. Identification of a homozygous exon-skipping mutation in the LAMC2 gene in a patient with Herlitz's junctional epidermolysis bullosa. J Invest Dermatol. 1995 Mar;104(3):434–437. doi: 10.1111/1523-1747.ep12666027. [DOI] [PubMed] [Google Scholar]
  176. Vailly J., Pulkkinen L., Miquel C., Christiano A. M., Gerecke D., Burgeson R. E., Uitto J., Ortonne J. P., Meneguzzi G. Identification of a homozygous one-basepair deletion in exon 14 of the LAMB3 gene in a patient with Herlitz junctional epidermolysis bullosa and prenatal diagnosis in a family at risk for recurrence. J Invest Dermatol. 1995 Apr;104(4):462–466. doi: 10.1111/1523-1747.ep12605898. [DOI] [PubMed] [Google Scholar]
  177. Vailly J., Verrando P., Champliaud M. F., Gerecke D., Wagman D. W., Baudoin C., Aberdam D., Burgeson R., Bauer E., Ortonne J. P. The 100-kDa chain of nicein/kalinin is a laminin B2 chain variant. Eur J Biochem. 1994 Jan 15;219(1-2):209–218. doi: 10.1111/j.1432-1033.1994.tb19932.x. [DOI] [PubMed] [Google Scholar]
  178. Vidal F., Aberdam D., Miquel C., Christiano A. M., Pulkkinen L., Uitto J., Ortonne J. P., Meneguzzi G. Integrin beta 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat Genet. 1995 Jun;10(2):229–234. doi: 10.1038/ng0695-229. [DOI] [PubMed] [Google Scholar]
  179. Virtanen I., Laitinen L., Korhonen M. Differential expression of laminin polypeptides in developing and adult human kidney. J Histochem Cytochem. 1995 Jun;43(6):621–628. doi: 10.1177/43.6.7769233. [DOI] [PubMed] [Google Scholar]
  180. Wary K. K., Mainiero F., Isakoff S. J., Marcantonio E. E., Giancotti F. G. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell. 1996 Nov 15;87(4):733–743. doi: 10.1016/s0092-8674(00)81392-6. [DOI] [PubMed] [Google Scholar]
  181. Williamson R. A., Henry M. D., Daniels K. J., Hrstka R. F., Lee J. C., Sunada Y., Ibraghimov-Beskrovnaya O., Campbell K. P. Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum Mol Genet. 1997 Jun;6(6):831–841. doi: 10.1093/hmg/6.6.831. [DOI] [PubMed] [Google Scholar]
  182. Xia Y., Gil S. G., Carter W. G. Anchorage mediated by integrin alpha6beta4 to laminin 5 (epiligrin) regulates tyrosine phosphorylation of a membrane-associated 80-kD protein. J Cell Biol. 1996 Feb;132(4):727–740. doi: 10.1083/jcb.132.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Xu H., Wu X. R., Wewer U. M., Engvall E. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nat Genet. 1994 Nov;8(3):297–302. doi: 10.1038/ng1194-297. [DOI] [PubMed] [Google Scholar]
  184. Yurchenco P. D., Cheng Y. S., Colognato H. Laminin forms an independent network in basement membranes. J Cell Biol. 1992 Jun;117(5):1119–1133. doi: 10.1083/jcb.117.5.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Yurchenco P. D., Cheng Y. S. Self-assembly and calcium-binding sites in laminin. A three-arm interaction model. J Biol Chem. 1993 Aug 15;268(23):17286–17299. [PubMed] [Google Scholar]
  186. Yurchenco P. D., Quan Y., Colognato H., Mathus T., Harrison D., Yamada Y., O'Rear J. J. The alpha chain of laminin-1 is independently secreted and drives secretion of its beta- and gamma-chain partners. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10189–10194. doi: 10.1073/pnas.94.19.10189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Yurchenco P. D., Schittny J. C. Molecular architecture of basement membranes. FASEB J. 1990 Apr 1;4(6):1577–1590. doi: 10.1096/fasebj.4.6.2180767. [DOI] [PubMed] [Google Scholar]
  188. Yurchenco P. D., Tsilibary E. C., Charonis A. S., Furthmayr H. Laminin polymerization in vitro. Evidence for a two-step assembly with domain specificity. J Biol Chem. 1985 Jun 25;260(12):7636–7644. [PubMed] [Google Scholar]
  189. Zahedi K. Characterization of the binding of serum amyloid P to laminin. J Biol Chem. 1997 Jan 24;272(4):2143–2148. [PubMed] [Google Scholar]
  190. van der Neut R., Krimpenfort P., Calafat J., Niessen C. M., Sonnenberg A. Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet. 1996 Jul;13(3):366–369. doi: 10.1038/ng0796-366. [DOI] [PubMed] [Google Scholar]
  191. van der Rest M., Garrone R. Collagen family of proteins. FASEB J. 1991 Oct;5(13):2814–2823. [PubMed] [Google Scholar]
  192. von der Mark H., Dürr J., Sonnenberg A., von der Mark K., Deutzmann R., Goodman S. L. Skeletal myoblasts utilize a novel beta 1-series integrin and not alpha 6 beta 1 for binding to the E8 and T8 fragments of laminin. J Biol Chem. 1991 Dec 15;266(35):23593–23601. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES