Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 1;25(13):2547–2561. doi: 10.1093/nar/25.13.2547

Alternative poly(A) site selection in complex transcription units: means to an end?

G Edwalds-Gilbert 1, K L Veraldi 1, C Milcarek 1
PMCID: PMC146782  PMID: 9185563

Abstract

Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.

Full Text

The Full Text of this article is available as a PDF (171.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahuja S. K., Shetty A., Tiffany H. L., Murphy P. M. Comparison of the genomic organization and promoter function for human interleukin-8 receptors A and B. J Biol Chem. 1994 Oct 21;269(42):26381–26389. [PubMed] [Google Scholar]
  2. Alt F. W., Bothwell A. L., Knapp M., Siden E., Mather E., Koshland M., Baltimore D. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3' ends. Cell. 1980 Jun;20(2):293–301. doi: 10.1016/0092-8674(80)90615-7. [DOI] [PubMed] [Google Scholar]
  3. Amara S. G., Evans R. M., Rosenfeld M. G. Calcitonin/calcitonin gene-related peptide transcription unit: tissue-specific expression involves selective use of alternative polyadenylation sites. Mol Cell Biol. 1984 Oct;4(10):2151–2160. doi: 10.1128/mcb.4.10.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amara S. G., Jonas V., Rosenfeld M. G., Ong E. S., Evans R. M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982 Jul 15;298(5871):240–244. doi: 10.1038/298240a0. [DOI] [PubMed] [Google Scholar]
  5. Ancian P., Lambeau G., Mattéi M. G., Lazdunski M. The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J Biol Chem. 1995 Apr 14;270(15):8963–8970. doi: 10.1074/jbc.270.15.8963. [DOI] [PubMed] [Google Scholar]
  6. Ashe M. P., Griffin P., James W., Proudfoot N. J. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev. 1995 Dec 1;9(23):3008–3025. doi: 10.1101/gad.9.23.3008. [DOI] [PubMed] [Google Scholar]
  7. Aulak K. S., Liu J., Wu J., Hyatt S. L., Puppi M., Henning S. J., Hatzoglou M. Molecular sites of regulation of expression of the rat cationic amino acid transporter gene. J Biol Chem. 1996 Nov 22;271(47):29799–29806. doi: 10.1074/jbc.271.47.29799. [DOI] [PubMed] [Google Scholar]
  8. Ayté J., Gil-Gómez G., Hegardt F. G. Structural characterization of the 3' noncoding region of the gene encoding rat mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase. Gene. 1993 Jan 30;123(2):267–270. doi: 10.1016/0378-1119(93)90136-q. [DOI] [PubMed] [Google Scholar]
  9. Azuma T., Liu W. G., Vander Laan D. J., Bowcock A. M., Taggart R. T. Human gastric cathepsin E gene. Multiple transcripts result from alternative polyadenylation of the primary transcripts of a single gene locus at 1q31-q32. J Biol Chem. 1992 Jan 25;267(3):1609–1614. [PubMed] [Google Scholar]
  10. Bach I., Yaniv M. More potent transcriptional activators or a transdominant inhibitor of the HNF1 homeoprotein family are generated by alternative RNA processing. EMBO J. 1993 Nov;12(11):4229–4242. doi: 10.1002/j.1460-2075.1993.tb06107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Baker B. S. Sex in flies: the splice of life. Nature. 1989 Aug 17;340(6234):521–524. doi: 10.1038/340521a0. [DOI] [PubMed] [Google Scholar]
  12. Barbas J. A., Chaix J. C., Steinmetz M., Goridis C. Differential splicing and alternative polyadenylation generates distinct NCAM transcripts and proteins in the mouse. EMBO J. 1988 Mar;7(3):625–632. doi: 10.1002/j.1460-2075.1988.tb02856.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bedell M. A., Copeland N. G., Jenkins N. A. Multiple pathways for Steel regulation suggested by genomic and sequence analysis of the murine Steel gene. Genetics. 1996 Mar;142(3):927–934. doi: 10.1093/genetics/142.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Benech P., Merlin G., Revel M., Chebath J. 3' end structure of the human (2'-5') oligo A synthetase gene: prediction of two distinct proteins with cell type-specific expression. Nucleic Acids Res. 1985 Feb 25;13(4):1267–1281. doi: 10.1093/nar/13.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Benz E. W., Jr, Getz M. J., Wells D. J., Moses H. L. Nuclear RNA polymerase activities and poly(A)-containing mRNA accumulation in cultured AKR mouse embryo cells stimulated to proliferate. Exp Cell Res. 1977 Aug;108(1):157–165. [PubMed] [Google Scholar]
  16. Berget S. M. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. doi: 10.1074/jbc.270.6.2411. [DOI] [PubMed] [Google Scholar]
  17. Bernard A. M., Mattei M. G., Pierres M., Marguet D. Structure of the mouse dipeptidyl peptidase IV (CD26) gene. Biochemistry. 1994 Dec 20;33(50):15204–15214. doi: 10.1021/bi00254a032. [DOI] [PubMed] [Google Scholar]
  18. Bienroth S., Wahle E., Suter-Crazzolara C., Keller W. Purification of the cleavage and polyadenylation factor involved in the 3'-processing of messenger RNA precursors. J Biol Chem. 1991 Oct 15;266(29):19768–19776. [PubMed] [Google Scholar]
  19. Birkenmeier C. S., White R. A., Peters L. L., Hall E. J., Lux S. E., Barker J. E. Complex patterns of sequence variation and multiple 5' and 3' ends are found among transcripts of the erythroid ankyrin gene. J Biol Chem. 1993 May 5;268(13):9533–9540. [PubMed] [Google Scholar]
  20. Bonthron D. T., Brady N., Donaldson I. A., Steinmann B. Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase). Hum Mol Genet. 1994 Sep;3(9):1627–1631. doi: 10.1093/hmg/3.9.1627. [DOI] [PubMed] [Google Scholar]
  21. Bost L. M., Hjelmeland L. M. Cell density regulates differential production of bFGF transcripts. Growth Factors. 1993;9(3):195–203. doi: 10.3109/08977199309010832. [DOI] [PubMed] [Google Scholar]
  22. Brocard M. P., Rousseau D., Lawrence J. J., Khochbin S. Two mRNA species encoding the differentiation-associated histone H1(0) are produced by alternative polyadenylation in mouse. Eur J Biochem. 1994 Apr 1;221(1):421–425. doi: 10.1111/j.1432-1033.1994.tb18754.x. [DOI] [PubMed] [Google Scholar]
  23. Brown P. H., Tiley L. S., Cullen B. R. Effect of RNA secondary structure on polyadenylation site selection. Genes Dev. 1991 Jul;5(7):1277–1284. doi: 10.1101/gad.5.7.1277. [DOI] [PubMed] [Google Scholar]
  24. Brown S. L., Morrison S. L. Developmental regulation of membrane and secretory Ig gamma 2b mRNA. J Immunol. 1989 Mar 15;142(6):2072–2080. [PubMed] [Google Scholar]
  25. Burk S. E., Shull G. E. Structure of the rat plasma membrane Ca(2+)-ATPase isoform 3 gene and characterization of alternative splicing and transcription products. Skeletal muscle-specific splicing results in a plasma membrane Ca(2+)-ATPase with a novel calmodulin-binding domain. J Biol Chem. 1992 Sep 25;267(27):19683–19690. [PubMed] [Google Scholar]
  26. Burtis K. C., Baker B. S. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell. 1989 Mar 24;56(6):997–1010. doi: 10.1016/0092-8674(89)90633-8. [DOI] [PubMed] [Google Scholar]
  27. Callaghan T., Antczak M., Flickinger T., Raines M., Myers M., Kung H. J. A complete description of the EGF-receptor exon structure: implication in oncogenic activation and domain evolution. Oncogene. 1993 Nov;8(11):2939–2948. [PubMed] [Google Scholar]
  28. Cameron H. S., Szczepaniak D., Weston B. W. Expression of human chromosome 19p alpha(1,3)-fucosyltransferase genes in normal tissues. Alternative splicing, polyadenylation, and isoforms. J Biol Chem. 1995 Aug 25;270(34):20112–20122. doi: 10.1074/jbc.270.34.20112. [DOI] [PubMed] [Google Scholar]
  29. Carswell S., Alwine J. C. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 1989 Oct;9(10):4248–4258. doi: 10.1128/mcb.9.10.4248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Chabot B. Directing alternative splicing: cast and scenarios. Trends Genet. 1996 Nov;12(11):472–478. doi: 10.1016/0168-9525(96)10037-8. [DOI] [PubMed] [Google Scholar]
  31. Chen F., MacDonald C. C., Wilusz J. Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res. 1995 Jul 25;23(14):2614–2620. doi: 10.1093/nar/23.14.2614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Choi I., Simmen R. C., Simmen F. A. Molecular cloning of cytochrome P450 aromatase complementary deoxyribonucleic acid from periimplantation porcine and equine blastocysts identifies multiple novel 5'-untranslated exons expressed in embryos, endometrium, and placenta. Endocrinology. 1996 Apr;137(4):1457–1467. doi: 10.1210/endo.137.4.8625924. [DOI] [PubMed] [Google Scholar]
  33. Christofori G., Keller W. 3' cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell. 1988 Sep 9;54(6):875–889. doi: 10.1016/s0092-8674(88)91263-9. [DOI] [PubMed] [Google Scholar]
  34. Christofori G., Keller W. Poly(A) polymerase purified from HeLa cell nuclear extract is required for both cleavage and polyadenylation of pre-mRNA in vitro. Mol Cell Biol. 1989 Jan;9(1):193–203. doi: 10.1128/mcb.9.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Chu Z. L., Wickrema A., Krantz S. B., Winkelmann J. C. Erythroid-specific processing of human beta spectrin I pre-mRNA. Blood. 1994 Sep 15;84(6):1992–1999. [PubMed] [Google Scholar]
  36. Code R. J., Olmsted J. B. Mouse microtubule-associated protein 4 (MAP4) transcript diversity generated by alternative polyadenylation. Gene. 1992 Dec 15;122(2):367–370. doi: 10.1016/0378-1119(92)90228-h. [DOI] [PubMed] [Google Scholar]
  37. Coleman M. S., Hutton J. J., Bollum F. J. Terminal riboadenylate transferase in human lymphocytes. Nature. 1974 Mar 29;248(447):407–409. doi: 10.1038/248407a0. [DOI] [PubMed] [Google Scholar]
  38. Colgan D. F., Murthy K. G., Prives C., Manley J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature. 1996 Nov 21;384(6606):282–285. doi: 10.1038/384282a0. [DOI] [PubMed] [Google Scholar]
  39. Connelly S., Manley J. L. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 1988 Apr;2(4):440–452. doi: 10.1101/gad.2.4.440. [DOI] [PubMed] [Google Scholar]
  40. Connor R. J., Pasquale E. B. Genomic organization and alternatively processed forms of Cek5, a receptor protein-tyrosine kinase of the Eph subfamily. Oncogene. 1995 Dec 7;11(11):2429–2438. [PubMed] [Google Scholar]
  41. Cook W. J., Coen D. M. Temporal regulation of herpes simplex virus type 1 UL24 mRNA expression via differential polyadenylation. Virology. 1996 Apr 1;218(1):204–213. doi: 10.1006/viro.1996.0180. [DOI] [PubMed] [Google Scholar]
  42. Crenshaw E. B., 3rd, Russo A. F., Swanson L. W., Rosenfeld M. G. Neuron-specific alternative RNA processing in transgenic mice expressing a metallothionein-calcitonin fusion gene. Cell. 1987 May 8;49(3):389–398. doi: 10.1016/0092-8674(87)90291-1. [DOI] [PubMed] [Google Scholar]
  43. Crowley T. E., Hazelrigg T. A male-specific 3'-UTR regulates the steady-state level of the exuperantia mRNA during spermatogenesis in Drosophila. Mol Gen Genet. 1995 Aug 21;248(3):370–374. doi: 10.1007/BF02191604. [DOI] [PubMed] [Google Scholar]
  44. Currie P. D., Sullivan D. T. Structure and expression of the gene encoding phosphofructokinase (PFK) in Drosophila melanogaster. J Biol Chem. 1994 Oct 7;269(40):24679–24687. [PubMed] [Google Scholar]
  45. Curtis D., Lehmann R., Zamore P. D. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. doi: 10.1016/0092-8674(95)90325-9. [DOI] [PubMed] [Google Scholar]
  46. Cushley W., Coupar B. E., Mickelson C. A., Williamson A. R. A common mechanism for the synthesis of membrane and secreted immunoglobulin alpha, gamma and mu chains. Nature. 1982 Jul 1;298(5869):77–79. doi: 10.1038/298077a0. [DOI] [PubMed] [Google Scholar]
  47. Danielson K. G., Pillarisetti J., Cohen I. R., Sholehvar B., Huebner K., Ng L. J., Nicholls J. M., Cheah K. S., Iozzo R. V. Characterization of the complete genomic structure of the human WNT-5A gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J Biol Chem. 1995 Dec 29;270(52):31225–31234. doi: 10.1074/jbc.270.52.31225. [DOI] [PubMed] [Google Scholar]
  48. DeZazzo J. D., Falck-Pedersen E., Imperiale M. J. Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol Cell Biol. 1991 Dec;11(12):5977–5984. doi: 10.1128/mcb.11.12.5977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. DeZazzo J. D., Imperiale M. J. Sequences upstream of AAUAAA influence poly(A) site selection in a complex transcription unit. Mol Cell Biol. 1989 Nov;9(11):4951–4961. doi: 10.1128/mcb.9.11.4951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Denome R. M., Cole C. N. Patterns of polyadenylation site selection in gene constructs containing multiple polyadenylation signals. Mol Cell Biol. 1988 Nov;8(11):4829–4839. doi: 10.1128/mcb.8.11.4829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Dhar M. S., Joshi J. G. Differential processing of the ferritin heavy chain mRNA in human liver and adult human brain. J Neurochem. 1993 Dec;61(6):2140–2146. doi: 10.1111/j.1471-4159.1993.tb07452.x. [DOI] [PubMed] [Google Scholar]
  52. Dirks R. P., Bloemers H. P. Signals controlling the expression of PDGF. Mol Biol Rep. 1995;22(1):1–24. doi: 10.1007/BF00996300. [DOI] [PubMed] [Google Scholar]
  53. Eckner R., Ellmeier W., Birnstiel M. L. Mature mRNA 3' end formation stimulates RNA export from the nucleus. EMBO J. 1991 Nov;10(11):3513–3522. doi: 10.1002/j.1460-2075.1991.tb04915.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Edwalds-Gilbert G., Milcarek C. Regulation of poly(A) site use during mouse B-cell development involves a change in the binding of a general polyadenylation factor in a B-cell stage-specific manner. Mol Cell Biol. 1995 Nov;15(11):6420–6429. doi: 10.1128/mcb.15.11.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Edwalds-Gilbert G., Milcarek C. The binding of a subunit of the general polyadenylation factor cleavage-polyadenylation specificity factor (CPSF) to polyadenylation sites changes during B cell development. Nucleic Acids Symp Ser. 1995;(33):229–233. [PubMed] [Google Scholar]
  56. Edwalds-Gilbert G., Prescott J., Falck-Pedersen E. 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes. Mol Cell Biol. 1993 Jun;13(6):3472–3480. doi: 10.1128/mcb.13.6.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Faber P. W., van Rooij H. C., van der Korput H. A., Baarends W. M., Brinkmann A. O., Grootegoed J. A., Trapman J. Characterization of the human androgen receptor transcription unit. J Biol Chem. 1991 Jun 15;266(17):10743–10749. [PubMed] [Google Scholar]
  58. Falck-Pedersen E., Logan J. Regulation of poly(A) site selection in adenovirus. J Virol. 1989 Feb;63(2):532–541. doi: 10.1128/jvi.63.2.532-541.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Falck-Pedersen E., Logan J., Shenk T., Darnell J. E., Jr Transcription termination within the E1A gene of adenovirus induced by insertion of the mouse beta-major globin terminator element. Cell. 1985 Apr;40(4):897–905. doi: 10.1016/0092-8674(85)90349-6. [DOI] [PubMed] [Google Scholar]
  60. Ferrari S., Ronfani L., Calogero S., Bianchi M. E. The mouse gene coding for high mobility group 1 protein (HMG1). J Biol Chem. 1994 Nov 18;269(46):28803–28808. [PubMed] [Google Scholar]
  61. Flaspohler J. A., Boczkowski D., Hall B. L., Milcarek C. The 3'-untranslated region of membrane exon 2 from the gamma 2a immunoglobulin gene contributes to efficient transcription termination. J Biol Chem. 1995 May 19;270(20):11903–11911. doi: 10.1074/jbc.270.20.11903. [DOI] [PubMed] [Google Scholar]
  62. Flaspohler J. A., Milcarek C. Myelomas and lymphomas expressing the Ig gamma 2a H chain gene have similar transcription termination regions. J Immunol. 1990 Apr 1;144(7):2802–2810. [PubMed] [Google Scholar]
  63. Ford L. P., Bagga P. S., Wilusz J. The poly(A) tail inhibits the assembly of a 3'-to-5' exonuclease in an in vitro RNA stability system. Mol Cell Biol. 1997 Jan;17(1):398–406. doi: 10.1128/mcb.17.1.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Foulkes N. S., Schlotter F., Pévet P., Sassone-Corsi P. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature. 1993 Mar 18;362(6417):264–267. doi: 10.1038/362264a0. [DOI] [PubMed] [Google Scholar]
  65. Frayne E. G., Leys E. J., Crouse G. F., Hook A. G., Kellems R. E. Transcription of the mouse dihydrofolate reductase gene proceeds unabated through seven polyadenylation sites and terminates near a region of repeated DNA. Mol Cell Biol. 1984 Dec;4(12):2921–2924. doi: 10.1128/mcb.4.12.2921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Freije J. M., Díez-Itza I., Balbín M., Sánchez L. M., Blasco R., Tolivia J., López-Otín C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994 Jun 17;269(24):16766–16773. [PubMed] [Google Scholar]
  67. Fujita T., Shirasawa T., Uchida K., Maruyama N. Isolation of cDNA clone encoding rat senescence marker protein-30 (SMP30) and its tissue distribution. Biochim Biophys Acta. 1992 Oct 20;1132(3):297–305. doi: 10.1016/0167-4781(92)90164-u. [DOI] [PubMed] [Google Scholar]
  68. Furth P. A., Choe W. T., Rex J. H., Byrne J. C., Baker C. C. Sequences homologous to 5' splice sites are required for the inhibitory activity of papillomavirus late 3' untranslated regions. Mol Cell Biol. 1994 Aug;14(8):5278–5289. doi: 10.1128/mcb.14.8.5278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Furukawa K., Hotta Y. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J. 1993 Jan;12(1):97–106. doi: 10.1002/j.1460-2075.1993.tb05635.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Gallagher P. G., Forget B. G. Structure, organization, and expression of the human band 7.2b gene, a candidate gene for hereditary hydrocytosis. J Biol Chem. 1995 Nov 3;270(44):26358–26363. doi: 10.1074/jbc.270.44.26358. [DOI] [PubMed] [Google Scholar]
  71. Galli G., Guise J. W., McDevitt M. A., Tucker P. W., Nevins J. R. Relative position and strengths of poly(A) sites as well as transcription termination are critical to membrane versus secreted mu-chain expression during B-cell development. Genes Dev. 1987 Jul;1(5):471–481. doi: 10.1101/gad.1.5.471. [DOI] [PubMed] [Google Scholar]
  72. Genovese C., Harrold S., Milcarek C. Differential mRNA stabilities affect mRNA levels in mutant mouse myeloma cells. Somat Cell Mol Genet. 1991 Jan;17(1):69–81. doi: 10.1007/BF01233206. [DOI] [PubMed] [Google Scholar]
  73. Gieselmann V., Polten A., Kreysing J., von Figura K. Arylsulfatase A pseudodeficiency: loss of a polyadenylylation signal and N-glycosylation site. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9436–9440. doi: 10.1073/pnas.86.23.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Giger R. J., Vogt L., Zuellig R. A., Rader C., Henehan-Beatty A., Wolfer D. P., Sonderegger P. The gene of chicken axonin-1. Complete structure and analysis of the promoter. Eur J Biochem. 1995 Feb 1;227(3):617–628. doi: 10.1111/j.1432-1033.1995.tb20181.x. [DOI] [PubMed] [Google Scholar]
  75. Gil A., Proudfoot N. J. A sequence downstream of AAUAAA is required for rabbit beta-globin mRNA 3'-end formation. 1984 Nov 29-Dec 5Nature. 312(5993):473–474. doi: 10.1038/312473a0. [DOI] [PubMed] [Google Scholar]
  76. Gilmartin G. M., Fleming E. S., Oetjen J., Graveley B. R. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev. 1995 Jan 1;9(1):72–83. doi: 10.1101/gad.9.1.72. [DOI] [PubMed] [Google Scholar]
  77. Gilmartin G. M., Hung S. L., DeZazzo J. D., Fleming E. S., Imperiale M. J. Sequences regulating poly(A) site selection within the adenovirus major late transcription unit influence the interaction of constitutive processing factors with the pre-mRNA. J Virol. 1996 Mar;70(3):1775–1783. doi: 10.1128/jvi.70.3.1775-1783.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Gilmartin G. M., Nevins J. R. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 1989 Dec;3(12B):2180–2190. doi: 10.1101/gad.3.12b.2180. [DOI] [PubMed] [Google Scholar]
  79. Gilmartin G. M., Nevins J. R. Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol Cell Biol. 1991 May;11(5):2432–2438. doi: 10.1128/mcb.11.5.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Givol D., Yayon A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 1992 Dec;6(15):3362–3369. [PubMed] [Google Scholar]
  81. Gotlib R. W., Bishop D. F., Wang A. M., Zeidner K. M., Ioannou Y. A., Adler D. A., Disteche C. M., Desnick R. J. The entire genomic sequence and cDNA expression of mouse alpha-galactosidase A. Biochem Mol Med. 1996 Apr;57(2):139–148. doi: 10.1006/bmme.1996.0020. [DOI] [PubMed] [Google Scholar]
  82. Granneman J. G., Lahners K. N. Analysis of human and rodent beta 3-adrenergic receptor messenger ribonucleic acids. Endocrinology. 1994 Sep;135(3):1025–1031. doi: 10.1210/endo.135.3.8070345. [DOI] [PubMed] [Google Scholar]
  83. Grinberg D., Thurlow J., Watson R., Smith R., Peters G., Dickson C. Transcriptional regulation of the int-2 gene in embryonal carcinoma cells. Cell Growth Differ. 1991 Mar;2(3):137–143. [PubMed] [Google Scholar]
  84. Grover J., Roughley P. J. Expression of cell-surface proteoglycan mRNA by human articular chondrocytes. Biochem J. 1995 Aug 1;309(Pt 3):963–968. doi: 10.1042/bj3090963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Guise J. W., Lim P. L., Yuan D., Tucker P. W. Alternative expression of secreted and membrane forms of immunoglobulin mu-chain is regulated by transcriptional termination in stable plasmacytoma transfectants. J Immunol. 1988 Jun 1;140(11):3988–3994. [PubMed] [Google Scholar]
  86. Gunderson S. I., Beyer K., Martin G., Keller W., Boelens W. C., Mattaj L. W. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell. 1994 Feb 11;76(3):531–541. doi: 10.1016/0092-8674(94)90116-3. [DOI] [PubMed] [Google Scholar]
  87. Gunderson S. I., Vagner S., Polycarpou-Schwarz M., Mattaj I. W. Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. Genes Dev. 1997 Mar 15;11(6):761–773. doi: 10.1101/gad.11.6.761. [DOI] [PubMed] [Google Scholar]
  88. Guo B., Brown F. M., Phillips J. D., Yu Y., Leibold E. A. Characterization and expression of iron regulatory protein 2 (IRP2). Presence of multiple IRP2 transcripts regulated by intracellular iron levels. J Biol Chem. 1995 Jul 14;270(28):16529–16535. doi: 10.1074/jbc.270.28.16529. [DOI] [PubMed] [Google Scholar]
  89. Haidaris P. J., Courtney M. A. Liver-specific RNA processing of the ubiquitously transcribed rat fibrinogen gamma-chain gene. Blood. 1992 Mar 1;79(5):1218–1224. [PubMed] [Google Scholar]
  90. Hall B., Milcarek C. Sequence and polyadenylation site determination of the murine immunoglobulin gamma 2a membrane 3' untranslated region. Mol Immunol. 1989 Sep;26(9):819–826. doi: 10.1016/0161-5890(89)90137-5. [DOI] [PubMed] [Google Scholar]
  91. Hammani K., Blakis A., Morsette D., Bowcock A. M., Schmutte C., Henriet P., DeClerck Y. A. Structure and characterization of the human tissue inhibitor of metalloproteinases-2 gene. J Biol Chem. 1996 Oct 11;271(41):25498–25505. doi: 10.1074/jbc.271.41.25498. [DOI] [PubMed] [Google Scholar]
  92. Hansen W. R., Barsic-Tress N., Taylor L., Curthoys N. P. The 3'-nontranslated region of rat renal glutaminase mRNA contains a pH-responsive stability element. Am J Physiol. 1996 Jul;271(1 Pt 2):F126–F131. doi: 10.1152/ajprenal.1996.271.1.F126. [DOI] [PubMed] [Google Scholar]
  93. Hardy W. R., Sandri-Goldin R. M. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol. 1994 Dec;68(12):7790–7799. doi: 10.1128/jvi.68.12.7790-7799.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Hart R. P., McDevitt M. A., Ali H., Nevins J. R. Definition of essential sequences and functional equivalence of elements downstream of the adenovirus E2A and the early simian virus 40 polyadenylation sites. Mol Cell Biol. 1985 Nov;5(11):2975–2983. doi: 10.1128/mcb.5.11.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Hauser H., Knippers R., Schäfer K. P. Increased rate of RNA-polyadenylation. An early response in Concanavalin A activated lymphocytes. Exp Cell Res. 1978 Jan;111(1):175–184. doi: 10.1016/0014-4827(78)90247-1. [DOI] [PubMed] [Google Scholar]
  96. Haviland D. L., Borel A. C., Fleischer D. T., Haviland J. C., Wetsel R. A. Structure, 5'-flanking sequence, and chromosome location of the human N-formyl peptide receptor gene. A single-copy gene comprised of two exons on chromosome 19q.13.3 that yields two distinct transcripts by alternative polyadenylation. Biochemistry. 1993 Apr 27;32(16):4168–4174. doi: 10.1021/bi00067a003. [DOI] [PubMed] [Google Scholar]
  97. Hazelrigg T., Tu C. Sex-specific processing of the Drosophila exuperantia transcript is regulated in male germ cells by the tra-2 gene. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10752–10756. doi: 10.1073/pnas.91.22.10752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Hedley M. L., Maniatis T. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell. 1991 May 17;65(4):579–586. doi: 10.1016/0092-8674(91)90090-l. [DOI] [PubMed] [Google Scholar]
  99. Heinemann T., Metzger S., Fisher E. A., Breslow J. L., Huang L. S. Alternative polyadenylation of apolipoprotein B RNA is a major cause of B-48 protein formation in rat hepatoma cell lines transfected with human apoB-100 minigenes. J Lipid Res. 1994 Dec;35(12):2200–2211. [PubMed] [Google Scholar]
  100. Hinsdale M. E., Farmer S. C., Johnson K. R., Davisson M. T., Hamm D. A., Tolwani R. J., Wood P. A. RNA expression and chromosomal location of the mouse long-chain acyl-CoA dehydrogenase gene. Genomics. 1995 Jul 20;28(2):163–170. doi: 10.1006/geno.1995.1127. [DOI] [PubMed] [Google Scholar]
  101. Hla T. Molecular characterization of the 5.2 KB isoform of the human cyclooxygenase-1 transcript. Prostaglandins. 1996 Jan;51(1):81–85. doi: 10.1016/0090-6980(95)00158-1. [DOI] [PubMed] [Google Scholar]
  102. Holguin M. H., Martin C. B., Eggett T., Parker C. J. Analysis of the gene that encodes the complement regulatory protein, membrane inhibitor of reactive lysis (CD59). Identification of an alternatively spliced exon and characterization of the transcriptional regulatory regions of the promoter. J Immunol. 1996 Aug 15;157(4):1659–1668. [PubMed] [Google Scholar]
  103. Hook A. G., Kellems R. E. Localization and sequence analysis of poly(A) sites generating multiple dihydrofolate reductase mRNAs. J Biol Chem. 1988 Feb 15;263(5):2337–2343. [PubMed] [Google Scholar]
  104. Hourcade D., Miesner D. R., Atkinson J. P., Holers V. M. Identification of an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction of a secreted form of complement receptor type 1. J Exp Med. 1988 Oct 1;168(4):1255–1270. doi: 10.1084/jem.168.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Huang Y., Carmichael G. G. A suboptimal 5' splice site is a cis-acting determinant of nuclear export of polyomavirus late mRNAs. Mol Cell Biol. 1996 Nov;16(11):6046–6054. doi: 10.1128/mcb.16.11.6046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Huang Y., Carmichael G. G. Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol Cell Biol. 1996 Apr;16(4):1534–1542. doi: 10.1128/mcb.16.4.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Hurt J., Hsu J. L., Dougall W. C., Visner G. A., Burr I. M., Nick H. S. Multiple mRNA species generated by alternate polyadenylation from the rat manganese superoxide dismutase gene. Nucleic Acids Res. 1992 Jun 25;20(12):2985–2990. doi: 10.1093/nar/20.12.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Itoh S., Iemura O., Yamada E., Yoshimura T., Tsujikawa K., Kohama Y., Mimura T. Mouse cytochrome P-450 linked ferredoxin: its cDNA cloning and inducibility by dibutyryladenosine 3',5'-cyclic monophosphate and forskolin. Biochim Biophys Acta. 1995 Aug 22;1263(2):173–175. doi: 10.1016/0167-4781(95)00102-m. [DOI] [PubMed] [Google Scholar]
  109. Jaramillo M., Pelletier J., Edery I., Nielsen P. J., Sonenberg N. Multiple mRNAs encode the murine translation initiation factor eIF-4E. J Biol Chem. 1991 Jun 5;266(16):10446–10451. [PubMed] [Google Scholar]
  110. Jenny A., Hauri H. P., Keller W. Characterization of cleavage and polyadenylation specificity factor and cloning of its 100-kilodalton subunit. Mol Cell Biol. 1994 Dec;14(12):8183–8190. doi: 10.1128/mcb.14.12.8183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Johnson D. E., Lu J., Chen H., Werner S., Williams L. T. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol. 1991 Sep;11(9):4627–4634. doi: 10.1128/mcb.11.9.4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Joos T. O., Whittaker C. A., Meng F., DeSimone D. W., Gnau V., Hausen P. Integrin alpha 5 during early development of Xenopus laevis. Mech Dev. 1995 Apr;50(2-3):187–199. doi: 10.1016/0925-4773(94)00335-k. [DOI] [PubMed] [Google Scholar]
  113. Jäck H. M., Wabl M. Immunoglobulin mRNA stability varies during B lymphocyte differentiation. EMBO J. 1988 Apr;7(4):1041–1046. doi: 10.1002/j.1460-2075.1988.tb02911.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Kan J. L., Jannatipour M., Taylor S. M., Moran R. G. Mouse cDNAs encoding a trifunctional protein of de novo purine synthesis and a related single-domain glycinamide ribonucleotide synthetase. Gene. 1993 Dec 31;137(2):195–202. [PubMed] [Google Scholar]
  115. Kan J. L., Moran R. G. Analysis of a mouse gene encoding three steps of purine synthesis reveals use of an intronic polyadenylation signal without alternative exon usage. J Biol Chem. 1995 Jan 27;270(4):1823–1832. doi: 10.1074/jbc.270.4.1823. [DOI] [PubMed] [Google Scholar]
  116. Kaufman R. J., Sharp P. A. Growth-dependent expression of dihydrofolate reductase mRNA from modular cDNA genes. Mol Cell Biol. 1983 Sep;3(9):1598–1608. doi: 10.1128/mcb.3.9.1598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Keller W., Bienroth S., Lang K. M., Christofori G. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3' processing signal AAUAAA. EMBO J. 1991 Dec;10(13):4241–4249. doi: 10.1002/j.1460-2075.1991.tb05002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Keller W. No end yet to messenger RNA 3' processing! Cell. 1995 Jun 16;81(6):829–832. doi: 10.1016/0092-8674(95)90001-2. [DOI] [PubMed] [Google Scholar]
  119. Kelley D. E., Perry R. P. Transcriptional and posttranscriptional control of immunoglobulin mRNA production during B lymphocyte development. Nucleic Acids Res. 1986 Jul 11;14(13):5431–5447. doi: 10.1093/nar/14.13.5431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Kiyokawa H., Busquets X., Powell C. T., Ngo L., Rifkind R. A., Marks P. A. Cloning of a D-type cyclin from murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2444–2447. doi: 10.1073/pnas.89.6.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Kobrin B. J., Milcarek C., Morrison S. L. Sequences near the 3' secretion-specific polyadenylation site influence levels of secretion-specific and membrane-specific IgG2b mRNA in myeloma cells. Mol Cell Biol. 1986 May;6(5):1687–1697. doi: 10.1128/mcb.6.5.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Kojima T., Inazawa J., Takamatsu J., Rosenberg R. D., Saito H. Human ryudocan core protein: molecular cloning and characterization of the cDNA, and chromosomal localization of the gene. Biochem Biophys Res Commun. 1993 Feb 15;190(3):814–822. doi: 10.1006/bbrc.1993.1122. [DOI] [PubMed] [Google Scholar]
  123. Kokoza V. A., Raikhel A. S. Ovarian- and somatic-specific transcripts of the mosquito clathrin heavy chain gene generated by alternative 5'-exon splicing and polyadenylation. J Biol Chem. 1997 Jan 10;272(2):1164–1170. doi: 10.1074/jbc.272.2.1164. [DOI] [PubMed] [Google Scholar]
  124. Konopiński R., Nowak R., Siedlecki J. A. Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta. Gene. 1996 Oct 17;176(1-2):191–195. doi: 10.1016/0378-1119(96)00245-4. [DOI] [PubMed] [Google Scholar]
  125. Krebber H., Ponstingl H. Ubiquitous expression and testis-specific alternative polyadenylation of mRNA for the human Ran GTPase activator RanGAP1. Gene. 1996 Nov 21;180(1-2):7–11. doi: 10.1016/s0378-1119(96)00389-7. [DOI] [PubMed] [Google Scholar]
  126. Kurkulos M., Weinberg J. M., Pepling M. E., Mount S. M. Polyadenylylation in copia requires unusually distant upstream sequences. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3038–3042. doi: 10.1073/pnas.88.8.3038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Larsen F., Solheim J., Kristensen T., Kolstø A. B., Prydz H. A tight cluster of five unrelated human genes on chromosome 16q22.1. Hum Mol Genet. 1993 Oct;2(10):1589–1595. doi: 10.1093/hmg/2.10.1589. [DOI] [PubMed] [Google Scholar]
  128. Larsson S., Svensson C., Akusjärvi G. Control of adenovirus major late gene expression at multiple levels. J Mol Biol. 1992 May 20;225(2):287–298. doi: 10.1016/0022-2836(92)90922-7. [DOI] [PubMed] [Google Scholar]
  129. Lassman C. R., Matis S., Hall B. L., Toppmeyer D. L., Milcarek C. Plasma cell-regulated polyadenylation at the Ig gamma 2b secretion-specific poly(A) site. J Immunol. 1992 Feb 15;148(4):1251–1260. [PubMed] [Google Scholar]
  130. Lassman C. R., Milcarek C. Regulated expression of the mouse gamma 2b Ig H chain gene is influenced by polyA site order and strength. J Immunol. 1992 Apr 15;148(8):2578–2585. [PubMed] [Google Scholar]
  131. Laudet V., Begue A., Henry-Duthoit C., Joubel A., Martin P., Stehelin D., Saule S. Genomic organization of the human thyroid hormone receptor alpha (c-erbA-1) gene. Nucleic Acids Res. 1991 Mar 11;19(5):1105–1112. doi: 10.1093/nar/19.5.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Lebman D. A., Park M. J., Fatica R., Zhang Z. Regulation of usage of membrane and secreted 3' termini of alpha mRNA differs from mu mRNA. J Immunol. 1992 May 15;148(10):3282–3289. [PubMed] [Google Scholar]
  133. Lee C. M., Haun R. S., Tsai S. C., Moss J., Vaughan M. Characterization of the human gene encoding ADP-ribosylation factor 1, a guanine nucleotide-binding activator of cholera toxin. J Biol Chem. 1992 May 5;267(13):9028–9034. [PubMed] [Google Scholar]
  134. Lee M. G., Lewis S. A., Wilde C. D., Cowan N. J. Evolutionary history of a multigene family: an expressed human beta-tubulin gene and three processed pseudogenes. Cell. 1983 Jun;33(2):477–487. doi: 10.1016/0092-8674(83)90429-4. [DOI] [PubMed] [Google Scholar]
  135. Lees-Miller J. P., Goodwin L. O., Helfman D. M. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol Cell Biol. 1990 Apr;10(4):1729–1742. doi: 10.1128/mcb.10.4.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Leff S. E., Evans R. M., Rosenfeld M. G. Splice commitment dictates neuron-specific alternative RNA processing in calcitonin/CGRP gene expression. Cell. 1987 Feb 13;48(3):517–524. doi: 10.1016/0092-8674(87)90202-9. [DOI] [PubMed] [Google Scholar]
  137. Leonard J. L., Farwell A. P., Yen P. M., Chin W. W., Stula M. Differential expression of thyroid hormone receptor isoforms in neurons and astroglial cells. Endocrinology. 1994 Aug;135(2):548–555. doi: 10.1210/endo.135.2.8033801. [DOI] [PubMed] [Google Scholar]
  138. Levy A. P., Levy N. S., Wegner S., Goldberg M. A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995 Jun 2;270(22):13333–13340. doi: 10.1074/jbc.270.22.13333. [DOI] [PubMed] [Google Scholar]
  139. Li Y., Camp S., Rachinsky T. L., Getman D., Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem. 1991 Dec 5;266(34):23083–23090. [PubMed] [Google Scholar]
  140. Li Y., Camp S., Taylor P. Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J Biol Chem. 1993 Mar 15;268(8):5790–5797. [PubMed] [Google Scholar]
  141. Lin B., Rommens J. M., Graham R. K., Kalchman M., MacDonald H., Nasir J., Delaney A., Goldberg Y. P., Hayden M. R. Differential 3' polyadenylation of the Huntington disease gene results in two mRNA species with variable tissue expression. Hum Mol Genet. 1993 Oct;2(10):1541–1545. doi: 10.1093/hmg/2.10.1541. [DOI] [PubMed] [Google Scholar]
  142. Liu Y., Bernard H. U., Apt D. NFI-B3, a novel transcriptional repressor of the nuclear factor I family, is generated by alternative RNA processing. J Biol Chem. 1997 Apr 18;272(16):10739–10745. doi: 10.1074/jbc.272.16.10739. [DOI] [PubMed] [Google Scholar]
  143. Lou H., Gagel R. F., Berget S. M. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 1996 Jan 15;10(2):208–219. doi: 10.1101/gad.10.2.208. [DOI] [PubMed] [Google Scholar]
  144. Lou H., Yang Y., Cote G. J., Berget S. M., Gagel R. F. An intron enhancer containing a 5' splice site sequence in the human calcitonin/calcitonin gene-related peptide gene. Mol Cell Biol. 1995 Dec;15(12):7135–7142. doi: 10.1128/mcb.15.12.7135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Lutz C. S., Alwine J. C. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev. 1994 Mar 1;8(5):576–586. doi: 10.1101/gad.8.5.576. [DOI] [PubMed] [Google Scholar]
  146. Lutz C. S., Murthy K. G., Schek N., O'Connor J. P., Manley J. L., Alwine J. C. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 1996 Feb 1;10(3):325–337. doi: 10.1101/gad.10.3.325. [DOI] [PubMed] [Google Scholar]
  147. Lynch K. W., Maniatis T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 1996 Aug 15;10(16):2089–2101. doi: 10.1101/gad.10.16.2089. [DOI] [PubMed] [Google Scholar]
  148. MacDonald C. C., Wilusz J., Shenk T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol. 1994 Oct;14(10):6647–6654. doi: 10.1128/mcb.14.10.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Maine A. B., Stauffer J. K., Tolan D. R., Ciejek-Baez E. Unique use of alternative polyadenylation signals in the mouse aldolase B gene. Biochim Biophys Acta. 1992 Jan 6;1129(2):243–245. doi: 10.1016/0167-4781(92)90497-n. [DOI] [PubMed] [Google Scholar]
  150. Mallo M., Steingrímsson E., Copeland N. G., Jenkins N. A., Gridley T. Genomic organization, alternative polyadenylation, and chromosomal localization of Grg, a mouse gene related to the groucho transcript of the Drosophila Enhancer of split complex. Genomics. 1994 May 1;21(1):194–201. doi: 10.1006/geno.1994.1242. [DOI] [PubMed] [Google Scholar]
  151. Manley J. L. A complex protein assembly catalyzes polyadenylation of mRNA precursors. Curr Opin Genet Dev. 1995 Apr;5(2):222–228. doi: 10.1016/0959-437x(95)80012-3. [DOI] [PubMed] [Google Scholar]
  152. Manley J. L., Takagaki Y. The end of the message--another link between yeast and mammals. Science. 1996 Nov 29;274(5292):1481–1482. doi: 10.1126/science.274.5292.1481. [DOI] [PubMed] [Google Scholar]
  153. Mann K. P., Weiss E. A., Nevins J. R. Alternative poly(A) site utilization during adenovirus infection coincides with a decrease in the activity of a poly(A) site processing factor. Mol Cell Biol. 1993 Apr;13(4):2411–2419. doi: 10.1128/mcb.13.4.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Martin G., Keller W. Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. EMBO J. 1996 May 15;15(10):2593–2603. [PMC free article] [PubMed] [Google Scholar]
  155. Marynen P., Zhang J., Cassiman J. J., Van den Berghe H., David G. Partial primary structure of the 48- and 90-kilodalton core proteins of cell surface-associated heparan sulfate proteoglycans of lung fibroblasts. Prediction of an integral membrane domain and evidence for multiple distinct core proteins at the cell surface of human lung fibroblasts. J Biol Chem. 1989 Apr 25;264(12):7017–7024. [PubMed] [Google Scholar]
  156. Mason J. O., Williams G. T., Neuberger M. S. The half-life of immunoglobulin mRNA increases during B-cell differentiation: a possible role for targeting to membrane-bound polysomes. Genes Dev. 1988 Aug;2(8):1003–1011. doi: 10.1101/gad.2.8.1003. [DOI] [PubMed] [Google Scholar]
  157. Matis S. A., Martincic K., Milcarek C. B-lineage regulated polyadenylation occurs on weak poly(A) sites regardless of sequence composition at the cleavage and downstream regions. Nucleic Acids Res. 1996 Dec 1;24(23):4684–4692. doi: 10.1093/nar/24.23.4684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Matthews K. R., Tschudi C., Ullu E. A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev. 1994 Feb 15;8(4):491–501. doi: 10.1101/gad.8.4.491. [DOI] [PubMed] [Google Scholar]
  159. McCracken S., Fong N., Yankulov K., Ballantyne S., Pan G., Greenblatt J., Patterson S. D., Wickens M., Bentley D. L. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature. 1997 Jan 23;385(6614):357–361. doi: 10.1038/385357a0. [DOI] [PubMed] [Google Scholar]
  160. McDevitt M. A., Hart R. P., Wong W. W., Nevins J. R. Sequences capable of restoring poly(A) site function define two distinct downstream elements. EMBO J. 1986 Nov;5(11):2907–2913. doi: 10.1002/j.1460-2075.1986.tb04586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. McGregor F., Phelan A., Dunlop J., Clements J. B. Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol. 1996 Mar;70(3):1931–1940. doi: 10.1128/jvi.70.3.1931-1940.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. McLauchlan J., Phelan A., Loney C., Sandri-Goldin R. M., Clements J. B. Herpes simplex virus IE63 acts at the posttranscriptional level to stimulate viral mRNA 3' processing. J Virol. 1992 Dec;66(12):6939–6945. doi: 10.1128/jvi.66.12.6939-6945.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. McLauchlan J., Simpson S., Clements J. B. Herpes simplex virus induces a processing factor that stimulates poly(A) site usage. Cell. 1989 Dec 22;59(6):1093–1105. doi: 10.1016/0092-8674(89)90765-4. [DOI] [PubMed] [Google Scholar]
  164. Means G. D., Mahendroo M. S., Corbin C. J., Mathis J. M., Powell F. E., Mendelson C. R., Simpson E. R. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J Biol Chem. 1989 Nov 15;264(32):19385–19391. [PubMed] [Google Scholar]
  165. Mertens L., Van den Bosch L., Verboomen H., Wuytack F., De Smedt H., Eggermont J. Sequence and spatial requirements for regulated muscle-specific processing of the sarco/endoplasmic reticulum Ca(2+)-ATPase 2 gene transcript. J Biol Chem. 1995 May 5;270(18):11004–11011. doi: 10.1074/jbc.270.18.11004. [DOI] [PubMed] [Google Scholar]
  166. Milcarek C., Hall B. Cell-specific expression of secreted versus membrane forms of immunoglobulin gamma 2b mRNA involves selective use of alternate polyadenylation sites. Mol Cell Biol. 1985 Oct;5(10):2514–2520. doi: 10.1128/mcb.5.10.2514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Milcarek C., Suda-Hartman M., Croll S. C. Changes in abundance of IgG 2a mRNA in the nucleus and cytoplasm of a murine B-lymphoma before and after fusion to a myeloma cell. Mol Immunol. 1996 May-Jun;33(7-8):691–701. doi: 10.1016/0161-5890(96)00009-0. [DOI] [PubMed] [Google Scholar]
  168. Miller J. T., Stoltzfus C. M. Two distant upstream regions containing cis-acting signals regulating splicing facilitate 3'-end processing of avian sarcoma virus RNA. J Virol. 1992 Jul;66(7):4242–4251. doi: 10.1128/jvi.66.7.4242-4251.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Mishima K., Price S. R., Nightingale M. S., Kousvelari E., Moss J., Vaughan M. Regulation of ADP-ribosylation factor (ARF) expression. Cross-species conservation of the developmental and tissue-specific alternative polyadenylation of ARF 4 mRNA. J Biol Chem. 1992 Nov 25;267(33):24109–24116. [PubMed] [Google Scholar]
  170. Miyamoto S., Chiorini J. A., Urcelay E., Safer B. Regulation of gene expression for translation initiation factor eIF-2 alpha: importance of the 3' untranslated region. Biochem J. 1996 May 1;315(Pt 3):791–798. doi: 10.1042/bj3150791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Miyazaki T., Kanou Y., Murata Y., Ohmori S., Niwa T., Maeda K., Yamamura H., Seo H. Molecular cloning of a novel thyroid hormone-responsive gene, ZAKI-4, in human skin fibroblasts. J Biol Chem. 1996 Jun 14;271(24):14567–14571. doi: 10.1074/jbc.271.24.14567. [DOI] [PubMed] [Google Scholar]
  172. Moore B. B., Tan J., Lim P. L., Tucker P. W., Yuan D. Regulatory elements necessary for termination of transcription within the Ig heavy chain gene locus. Nucleic Acids Res. 1993 Mar 25;21(6):1481–1488. doi: 10.1093/nar/21.6.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Moreira A., Wollerton M., Monks J., Proudfoot N. J. Upstream sequence elements enhance poly(A) site efficiency of the C2 complement gene and are phylogenetically conserved. EMBO J. 1995 Aug 1;14(15):3809–3819. doi: 10.1002/j.1460-2075.1995.tb00050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Moscow J. A., He R., Gudas J. M., Cowan K. H. Utilization of multiple polyadenylation signals in the human RHOA protooncogene. Gene. 1994 Jul 8;144(2):229–236. doi: 10.1016/0378-1119(94)90382-4. [DOI] [PubMed] [Google Scholar]
  175. Munroe S. H., Lazar M. A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem. 1991 Nov 25;266(33):22083–22086. [PubMed] [Google Scholar]
  176. Murthy K. G., Manley J. L. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem. 1992 Jul 25;267(21):14804–14811. [PubMed] [Google Scholar]
  177. Nagai T., Harigae H., Ishihara H., Motohashi H., Minegishi N., Tsuchiya S., Hayashi N., Gu L., Andres B., Engel J. D. Transcription factor GATA-2 is expressed in erythroid, early myeloid, and CD34+ human leukemia-derived cell lines. Blood. 1994 Aug 15;84(4):1074–1084. [PubMed] [Google Scholar]
  178. Nevins J. R., Chen-Kiang S. Processing of adenovirus nuclear RNA to mRNA. Adv Virus Res. 1981;26:1–35. doi: 10.1016/s0065-3527(08)60419-4. [DOI] [PubMed] [Google Scholar]
  179. Newman B., Dai Y. Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites. Mol Reprod Dev. 1996 Jul;44(3):275–288. doi: 10.1002/(SICI)1098-2795(199607)44:3<275::AID-MRD1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  180. Nishikura K., Vuocolo G. A. Synthesis of two mRNAs by utilization of alternate polyadenylation sites: expression of SV40-mouse immunoglobulin mu chain gene recombinants in Cos monkey cells. EMBO J. 1984 Apr;3(4):689–699. doi: 10.1002/j.1460-2075.1984.tb01871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Niwa M., MacDonald C. C., Berget S. M. Are vertebrate exons scanned during splice-site selection? Nature. 1992 Nov 19;360(6401):277–280. doi: 10.1038/360277a0. [DOI] [PubMed] [Google Scholar]
  182. Niwa M., Rose S. D., Berget S. M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 1990 Sep;4(9):1552–1559. doi: 10.1101/gad.4.9.1552. [DOI] [PubMed] [Google Scholar]
  183. Oakley R. H., Sar M., Cidlowski J. A. The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem. 1996 Apr 19;271(16):9550–9559. doi: 10.1074/jbc.271.16.9550. [DOI] [PubMed] [Google Scholar]
  184. Oldham E. R., Bingham B., Baumbach W. R. A functional polyadenylation signal is embedded in the coding region of chicken growth hormone receptor RNA. Mol Endocrinol. 1993 Nov;7(11):1379–1390. doi: 10.1210/mend.7.11.8114753. [DOI] [PubMed] [Google Scholar]
  185. Owczarek C. M., Layton M. J., Robb L. G., Nicola N. A., Begley C. G. Molecular basis of the soluble and membrane-bound forms of the murine leukemia inhibitory factor receptor alpha-chain. Expression in normal, gestating, and leukemia inhibitory factor nullizygous mice. J Biol Chem. 1996 Mar 8;271(10):5495–5504. doi: 10.1074/jbc.271.10.5495. [DOI] [PubMed] [Google Scholar]
  186. Pajot B., Sarger C., Bonnet J., Garret M. An alternative splicing modifies the C-terminal end of tryptophanyl-tRNA synthetase in murine embryonic stem cells. J Mol Biol. 1994 Sep 30;242(4):599–603. doi: 10.1006/jmbi.1994.1608. [DOI] [PubMed] [Google Scholar]
  187. Pajusola K., Aprelikova O., Armstrong E., Morris S., Alitalo K. Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. Oncogene. 1993 Nov;8(11):2931–2937. [PubMed] [Google Scholar]
  188. Pan S. S., Forrest G. L., Akman S. A., Hu L. T. NAD(P)H:quinone oxidoreductase expression and mitomycin C resistance developed by human colon cancer HCT 116 cells. Cancer Res. 1995 Jan 15;55(2):330–335. [PubMed] [Google Scholar]
  189. Parnes J. R., Robinson R. R., Seidman J. G. Multiple mRNA species with distinct 3' termini are transcribed from the beta 2-microglobulin gene. 1983 Mar 31-Apr 6Nature. 302(5907):449–452. doi: 10.1038/302449a0. [DOI] [PubMed] [Google Scholar]
  190. Petch L. A., Harris J., Raymond V. W., Blasband A., Lee D. C., Earp H. S. A truncated, secreted form of the epidermal growth factor receptor is encoded by an alternatively spliced transcript in normal rat tissue. Mol Cell Biol. 1990 Jun;10(6):2973–2982. doi: 10.1128/mcb.10.6.2973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Peterson M. L. Balanced efficiencies of splicing and cleavage-polyadenylation are required for mu-s and mu-m mRNA regulation. Gene Expr. 1992;2(4):319–327. [PMC free article] [PubMed] [Google Scholar]
  192. Peterson M. L., Gimmi E. R., Perry R. P. The developmentally regulated shift from membrane to secreted mu mRNA production is accompanied by an increase in cleavage-polyadenylation efficiency but no measurable change in splicing efficiency. Mol Cell Biol. 1991 Apr;11(4):2324–2327. doi: 10.1128/mcb.11.4.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Peterson M. L., Perry R. P. Regulated production of mu m and mu s mRNA requires linkage of the poly(A) addition sites and is dependent on the length of the mu s-mu m intron. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8883–8887. doi: 10.1073/pnas.83.23.8883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Peterson M. L. Regulated immunoglobulin (Ig) RNA processing does not require specific cis-acting sequences: non-Ig RNA can be alternatively processed in B cells and plasma cells. Mol Cell Biol. 1994 Dec;14(12):7891–7898. doi: 10.1128/mcb.14.12.7891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Phelan A., Carmo-Fonseca M., McLaughlan J., Lamond A. I., Clements J. B. A herpes simplex virus type 1 immediate-early gene product, IE63, regulates small nuclear ribonucleoprotein distribution. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9056–9060. doi: 10.1073/pnas.90.19.9056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Phillips C., Schimpl A., Dietrich-Goetz W., Clements J. B., Virtanen A. Inducible nuclear factors binding the IgM heavy chain pre-mRNA secretory poly(A) site. Eur J Immunol. 1996 Dec;26(12):3144–3152. doi: 10.1002/eji.1830261247. [DOI] [PubMed] [Google Scholar]
  197. Pierce A., Lyon M., Hampson I. N., Cowling G. J., Gallagher J. T. Molecular cloning of the major cell surface heparan sulfate proteoglycan from rat liver. J Biol Chem. 1992 Feb 25;267(6):3894–3900. [PubMed] [Google Scholar]
  198. Popielarz M., Cavaloc Y., Mattei M. G., Gattoni R., Stévenin J. The gene encoding human splicing factor 9G8. Structure, chromosomal localization, and expression of alternatively processed transcripts. J Biol Chem. 1995 Jul 28;270(30):17830–17835. doi: 10.1074/jbc.270.30.17830. [DOI] [PubMed] [Google Scholar]
  199. Preker P. J., Lingner J., Minvielle-Sebastia L., Keller W. The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell. 1995 May 5;81(3):379–389. doi: 10.1016/0092-8674(95)90391-7. [DOI] [PubMed] [Google Scholar]
  200. Prescott J. C., Falck-Pedersen E. Varied poly(A) site efficiency in the adenovirus major late transcription unit. J Biol Chem. 1992 Apr 25;267(12):8175–8181. [PubMed] [Google Scholar]
  201. Prescott J., Falck-Pedersen E. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol Cell Biol. 1994 Jul;14(7):4682–4693. doi: 10.1128/mcb.14.7.4682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Price S. R., Nightingale M. S., Bobak D. A., Tsuchiya M., Moss J., Vaughan M. Conservation of a 23-kDa human transplantation antigen in mammalian species. Genomics. 1992 Dec;14(4):959–964. doi: 10.1016/s0888-7543(05)80117-x. [DOI] [PubMed] [Google Scholar]
  203. Proudfoot N. Ending the message is not so simple. Cell. 1996 Nov 29;87(5):779–781. doi: 10.1016/s0092-8674(00)81982-0. [DOI] [PubMed] [Google Scholar]
  204. Qian J. F., Lazar-Wesley E., Breugnot C., May E. Human transforming growth factor alpha: sequence analysis of the 4.5-kb and 1.6-kb mRNA species. Gene. 1993 Oct 15;132(2):291–296. doi: 10.1016/0378-1119(93)90210-t. [DOI] [PubMed] [Google Scholar]
  205. Raabe T., Bollum F. J., Manley J. L. Primary structure and expression of bovine poly(A) polymerase. Nature. 1991 Sep 19;353(6341):229–234. doi: 10.1038/353229a0. [DOI] [PubMed] [Google Scholar]
  206. Ranganathan G., Ong J. M., Yukht A., Saghizadeh M., Simsolo R. B., Pauer A., Kern P. A. Tissue-specific expression of human lipoprotein lipase. Effect of the 3'-untranslated region on translation. J Biol Chem. 1995 Mar 31;270(13):7149–7155. doi: 10.1074/jbc.270.13.7149. [DOI] [PubMed] [Google Scholar]
  207. Ray K., Ganguly R. The Drosophila G protein gamma subunit gene (D-G gamma 1) produces three developmentally regulated transcripts and is predominantly expressed in the central nervous system. J Biol Chem. 1992 Mar 25;267(9):6086–6092. [PubMed] [Google Scholar]
  208. Reed D. J., Hawley J., Dang T., Yuan D. Role of differential mRNA stability in the regulated expression of IgM and IgD. J Immunol. 1994 Jun 1;152(11):5330–5336. [PubMed] [Google Scholar]
  209. Reiter J. L., Maihle N. J. A 1.8 kb alternative transcript from the human epidermal growth factor receptor gene encodes a truncated form of the receptor. Nucleic Acids Res. 1996 Oct 15;24(20):4050–4056. doi: 10.1093/nar/24.20.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Ristimäki A., Narko K., Hla T. Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J. 1996 Aug 15;318(Pt 1):325–331. doi: 10.1042/bj3180325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Rogers J., Choi E., Souza L., Carter C., Word C., Kuehl M., Eisenberg D., Wall R. Gene segments encoding transmembrane carboxyl termini of immunoglobulin gamma chains. Cell. 1981 Oct;26(1 Pt 1):19–27. doi: 10.1016/0092-8674(81)90029-5. [DOI] [PubMed] [Google Scholar]
  212. Rogers J., Early P., Carter C., Calame K., Bond M., Hood L., Wall R. Two mRNAs with different 3' ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell. 1980 Jun;20(2):303–312. doi: 10.1016/0092-8674(80)90616-9. [DOI] [PubMed] [Google Scholar]
  213. Rorsman F., Leveen P., Betsholtz C. Platelet-derived growth factor (PDGF) A-chain mRNA heterogeneity generated by the use of alternative promoters and alternative polyadenylation sites. Growth Factors. 1992;7(3):241–251. doi: 10.3109/08977199209046928. [DOI] [PubMed] [Google Scholar]
  214. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Ruiz-Opazo N., Nadal-Ginard B. Alpha-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J Biol Chem. 1987 Apr 5;262(10):4755–4765. [PubMed] [Google Scholar]
  216. Russell D. L., Kim K. H. Expression of triosephosphate isomerase transcripts in rat testis: evidence for retinol regulation and a novel germ cell transcript. Biol Reprod. 1996 Jul;55(1):11–18. doi: 10.1095/biolreprod55.1.11. [DOI] [PubMed] [Google Scholar]
  217. Russnak R., Ganem D. Sequences 5' to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses. Genes Dev. 1990 May;4(5):764–776. doi: 10.1101/gad.4.5.764. [DOI] [PubMed] [Google Scholar]
  218. Rüegsegger U., Beyer K., Keller W. Purification and characterization of human cleavage factor Im involved in the 3' end processing of messenger RNA precursors. J Biol Chem. 1996 Mar 15;271(11):6107–6113. doi: 10.1074/jbc.271.11.6107. [DOI] [PubMed] [Google Scholar]
  219. Sachs A., Wahle E. Poly(A) tail metabolism and function in eucaryotes. J Biol Chem. 1993 Nov 5;268(31):22955–22958. [PubMed] [Google Scholar]
  220. Sadofsky M., Alwine J. C. Sequences on the 3' side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site. Mol Cell Biol. 1984 Aug;4(8):1460–1468. doi: 10.1128/mcb.4.8.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Saez C. G., Myers J. C., Shows T. B., Leinwand L. A. Human nonmuscle myosin heavy chain mRNA: generation of diversity through alternative polyadenylylation. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1164–1168. doi: 10.1073/pnas.87.3.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Sandri-Goldin R. M., Mendoza G. E. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev. 1992 May;6(5):848–863. doi: 10.1101/gad.6.5.848. [DOI] [PubMed] [Google Scholar]
  223. Saunders M. E., Gewert D. R., Tugwell M. E., McMahon M., Williams B. R. Human 2-5A synthetase: characterization of a novel cDNA and corresponding gene structure. EMBO J. 1985 Jul;4(7):1761–1768. doi: 10.1002/j.1460-2075.1985.tb03848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Scott G. K., Robles R., Park J. W., Montgomery P. A., Daniel J., Holmes W. E., Lee J., Keller G. A., Li W. L., Fendly B. M. A truncated intracellular HER2/neu receptor produced by alternative RNA processing affects growth of human carcinoma cells. Mol Cell Biol. 1993 Apr;13(4):2247–2257. doi: 10.1128/mcb.13.4.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Seipelt R. L., Peterson M. L. Alternative processing of IgA pre-mRNA responds like IgM to alterations in the efficiency of the competing splice and cleavage-polyadenylation reactions. Mol Immunol. 1995 Mar;32(4):277–285. doi: 10.1016/0161-5890(94)00141-m. [DOI] [PubMed] [Google Scholar]
  226. Sheets M. D., Ogg S. C., Wickens M. P. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 1990 Oct 11;18(19):5799–5805. doi: 10.1093/nar/18.19.5799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Shen T., Anderson S. L., Rubin B. Y. Use of alternative polyadenylation sites in the synthesis of mRNAs encoding the interferon-induced tryptophanyl tRNA synthetase. Gene. 1996 Nov 14;179(2):225–229. doi: 10.1016/s0378-1119(96)00361-7. [DOI] [PubMed] [Google Scholar]
  228. Shimamoto A., Kitao S., Ichikawa K., Suzuki N., Yamabe Y., Imamura O., Tokutake Y., Satoh M., Matsumoto T., Kuromitsu J. A unique human gene that spans over 230 kb in the human chromosome 8p11-12 and codes multiple family proteins sharing RNA-binding motifs. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10913–10917. doi: 10.1073/pnas.93.20.10913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Si K., Das K., Maitra U. Characterization of multiple mRNAs that encode mammalian translation initiation factor 5 (eIF-5). J Biol Chem. 1996 Jul 12;271(28):16934–16938. doi: 10.1074/jbc.271.28.16934. [DOI] [PubMed] [Google Scholar]
  230. Smith R., Peters G., Dickson C. Multiple RNAs expressed from the int-2 gene in mouse embryonal carcinoma cell lines encode a protein with homology to fibroblast growth factors. EMBO J. 1988 Apr;7(4):1013–1022. doi: 10.1002/j.1460-2075.1988.tb02908.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Strathdee C. A., Gavish H., Shannon W. R., Buchwald M. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature. 1992 Apr 30;356(6372):763–767. doi: 10.1038/356763a0. [DOI] [PubMed] [Google Scholar]
  232. Sugiura N., Hagiwara H., Hirose S. Molecular cloning of porcine soluble angiotensin-binding protein. J Biol Chem. 1992 Sep 5;267(25):18067–18072. [PubMed] [Google Scholar]
  233. Sun Y., Hegamyer G., Kim H., Sithanandam K., Li H., Watts R., Colburn N. H. Molecular cloning of mouse tissue inhibitor of metalloproteinases-3 and its promoter. Specific lack of expression in neoplastic JB6 cells may reflect altered gene methylation. J Biol Chem. 1995 Aug 18;270(33):19312–19319. doi: 10.1074/jbc.270.33.19312. [DOI] [PubMed] [Google Scholar]
  234. Sureau A., Perbal B. Several mRNAs with variable 3' untranslated regions and different stability encode the human PR264/SC35 splicing factor. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):932–936. doi: 10.1073/pnas.91.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Tachibana K., Umezawa A., Takano T. Detection and characterization of mRNA and proteins encoded by human rab2 low molecular weight GTP-binding protein gene. Biochem Int. 1992 Oct;28(1):181–189. [PubMed] [Google Scholar]
  236. Takagaki Y., MacDonald C. C., Shenk T., Manley J. L. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1403–1407. doi: 10.1073/pnas.89.4.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Takagaki Y., Manley J. L. A human polyadenylation factor is a G protein beta-subunit homologue. J Biol Chem. 1992 Nov 25;267(33):23471–23474. [PubMed] [Google Scholar]
  238. Takagaki Y., Manley J. L. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature. 1994 Dec 1;372(6505):471–474. doi: 10.1038/372471a0. [DOI] [PubMed] [Google Scholar]
  239. Takagaki Y., Ryner L. C., Manley J. L. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell. 1988 Mar 11;52(5):731–742. doi: 10.1016/0092-8674(88)90411-4. [DOI] [PubMed] [Google Scholar]
  240. Takagaki Y., Seipelt R. L., Peterson M. L., Manley J. L. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell. 1996 Nov 29;87(5):941–952. doi: 10.1016/s0092-8674(00)82000-0. [DOI] [PubMed] [Google Scholar]
  241. Tanimoto K., Murakami K., Fukamizu A. Possible roles of the 3'-flanking sequences of the human activin beta A subunit gene in its expression. Arch Biochem Biophys. 1993 May;302(2):409–416. doi: 10.1006/abbi.1993.1232. [DOI] [PubMed] [Google Scholar]
  242. Tanimoto K., Tamura K., Ueno N., Usuki S., Murakami K., Fukamizu A. Regulation of activin beta A mRNA level by cAMP. Biochem Biophys Res Commun. 1992 Jan 31;182(2):773–778. doi: 10.1016/0006-291x(92)91799-v. [DOI] [PubMed] [Google Scholar]
  243. Terashima M., Toda K., Kawamoto T., Kuribayashi I., Ogawa Y., Maeda T., Shizuta Y. Isolation of a full-length cDNA encoding mouse aromatase P450. Arch Biochem Biophys. 1991 Mar;285(2):231–237. doi: 10.1016/0003-9861(91)90354-l. [DOI] [PubMed] [Google Scholar]
  244. Thekkumkara T. J., Livingston W., 3rd, Kumar R. S., Sen G. C. Use of alternative polyadenylation sites for tissue-specific transcription of two angiotensin-converting enzyme mRNAs. Nucleic Acids Res. 1992 Feb 25;20(4):683–687. doi: 10.1093/nar/20.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Timmusk T., Palm K., Metsis M., Reintam T., Paalme V., Saarma M., Persson H. Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron. 1993 Mar;10(3):475–489. doi: 10.1016/0896-6273(93)90335-o. [DOI] [PubMed] [Google Scholar]
  246. Toda K., Terashima M., Mitsuuchi Y., Yamasaki Y., Yokoyama Y., Nojima S., Ushiro H., Maeda T., Yamamoto Y., Sagara Y. Alternative usage of different poly(A) addition signals for two major species of mRNA encoding human aromatase P-450. FEBS Lett. 1989 Apr 24;247(2):371–376. doi: 10.1016/0014-5793(89)81373-0. [DOI] [PubMed] [Google Scholar]
  247. Tone M., Walsh L. A., Waldmann H. Gene structure of human CD59 and demonstration that discrete mRNAs are generated by alternative polyadenylation. J Mol Biol. 1992 Oct 5;227(3):971–976. doi: 10.1016/0022-2836(92)90239-g. [DOI] [PubMed] [Google Scholar]
  248. Torres R. M., Clark E. A. Differential increase of an alternatively polyadenylated mRNA species of murine CD40 upon B lymphocyte activation. J Immunol. 1992 Jan 15;148(2):620–626. [PubMed] [Google Scholar]
  249. Troelstra C., Hesen W., Bootsma D., Hoeijmakers J. H. Structure and expression of the excision repair gene ERCC6, involved in the human disorder Cockayne's syndrome group B. Nucleic Acids Res. 1993 Feb 11;21(3):419–426. doi: 10.1093/nar/21.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Tsurushita N., Avdalovic N. M., Korn L. J. Regulation of differential processing of mouse immunoglobulin mu heavy-chain mRNA. Nucleic Acids Res. 1987 Jun 11;15(11):4603–4615. doi: 10.1093/nar/15.11.4603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Tsurushita N., Korn L. J. Effects of intron length on differential processing of mouse mu heavy-chain mRNA. Mol Cell Biol. 1987 Jul;7(7):2602–2605. doi: 10.1128/mcb.7.7.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Valsamakis A., Zeichner S., Carswell S., Alwine J. C. The human immunodeficiency virus type 1 polyadenylylation signal: a 3' long terminal repeat element upstream of the AAUAAA necessary for efficient polyadenylylation. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2108–2112. doi: 10.1073/pnas.88.6.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Van den Bosch L., Mertens L., Cavaloc Y., Peterson M., Wuytack F., Eggermont J. Alternative processing of the sarco/endoplasmic reticulum Ca(2+)-ATPase transcripts during muscle differentiation is a specifically regulated process. Biochem J. 1996 Aug 1;317(Pt 3):647–651. doi: 10.1042/bj3170647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Veldman G. M., Bean K. M., Cumming D. A., Eddy R. L., Sait S. N., Shows T. B. Genomic organization and chromosomal localization of the gene encoding human P-selectin glycoprotein ligand. J Biol Chem. 1995 Jul 7;270(27):16470–16475. doi: 10.1074/jbc.270.27.16470. [DOI] [PubMed] [Google Scholar]
  255. Verkerk A. J., de Graaff E., De Boulle K., Eichler E. E., Konecki D. S., Reyniers E., Manca A., Poustka A., Willems P. J., Nelson D. L. Alternative splicing in the fragile X gene FMR1. Hum Mol Genet. 1993 Apr;2(4):399–404. doi: 10.1093/hmg/2.4.399. [DOI] [PubMed] [Google Scholar]
  256. Vihinen T., Auvinen P., Alanen-Kurki L., Jalkanen M. Structural organization and genomic sequence of mouse syndecan-1 gene. J Biol Chem. 1993 Aug 15;268(23):17261–17269. [PubMed] [Google Scholar]
  257. Vihinen T., Auvinen P., Alanen-Kurki L., Jalkanen M. Structural organization and genomic sequence of mouse syndecan-1 gene. J Biol Chem. 1993 Aug 15;268(23):17261–17269. [PubMed] [Google Scholar]
  258. Vinós J., Maroto M., Garesse R., Marco R., Cervera M. Drosophila melanogaster paramyosin: developmental pattern, mapping and properties deduced from its complete coding sequence. Mol Gen Genet. 1992 Feb;231(3):385–394. doi: 10.1007/BF00292707. [DOI] [PubMed] [Google Scholar]
  259. Wahle E. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell. 1991 Aug 23;66(4):759–768. doi: 10.1016/0092-8674(91)90119-j. [DOI] [PubMed] [Google Scholar]
  260. Wahle E., Keller W. The biochemistry of 3'-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem. 1992;61:419–440. doi: 10.1146/annurev.bi.61.070192.002223. [DOI] [PubMed] [Google Scholar]
  261. Wang Y. C., Rubenstein P. A. Choice of 3' cleavage/polyadenylation site in beta-tropomyosin RNA processing is differentiation-dependent in mouse BC3H1 muscle cells. J Biol Chem. 1992 Feb 5;267(4):2728–2736. [PubMed] [Google Scholar]
  262. Wang Y. C., Rubenstein P. A. Splicing of two alternative exon pairs in beta-tropomyosin pre-mRNA is independently controlled during myogenesis. J Biol Chem. 1992 Jun 15;267(17):12004–12010. [PubMed] [Google Scholar]
  263. Wassarman K. M., Steitz J. A. Association with terminal exons in pre-mRNAs: a new role for the U1 snRNP? Genes Dev. 1993 Apr;7(4):647–659. doi: 10.1101/gad.7.4.647. [DOI] [PubMed] [Google Scholar]
  264. Watakabe A., Sakamoto H., Shimura Y. Repositioning of an alternative exon sequence of mouse IgM pre-mRNA activates splicing of the preceding intron. Gene Expr. 1991;1(3):175–184. [PMC free article] [PubMed] [Google Scholar]
  265. Weiss E. A., Gilmartin G. M., Nevins J. R. Poly(A) site efficiency reflects the stability of complex formation involving the downstream element. EMBO J. 1991 Jan;10(1):215–219. doi: 10.1002/j.1460-2075.1991.tb07938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Whitelaw E., Proudfoot N. Alpha-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3' end processing in the human alpha 2 globin gene. EMBO J. 1986 Nov;5(11):2915–2922. doi: 10.1002/j.1460-2075.1986.tb04587.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Wickens M., Stephenson P. Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3' end formation. Science. 1984 Nov 30;226(4678):1045–1051. doi: 10.1126/science.6208611. [DOI] [PubMed] [Google Scholar]
  268. Williams C. J., O'Hare K. Elimination of introns at the Drosophila suppressor-of-forked locus by P-element-mediated gene conversion shows that an RNA lacking a stop codon is dispensable. Genetics. 1996 May;143(1):345–351. doi: 10.1093/genetics/143.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Wilusz J., Shenk T. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol. 1990 Dec;10(12):6397–6407. doi: 10.1128/mcb.10.12.6397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Winkelmann J. C., Costa F. F., Linzie B. L., Forget B. G. Beta spectrin in human skeletal muscle. Tissue-specific differential processing of 3' beta spectrin pre-mRNA generates a beta spectrin isoform with a unique carboxyl terminus. J Biol Chem. 1990 Nov 25;265(33):20449–20454. [PubMed] [Google Scholar]
  271. Wu Q., Krainer A. R. U1-mediated exon definition interactions between AT-AC and GT-AG introns. Science. 1996 Nov 8;274(5289):1005–1008. doi: 10.1126/science.274.5289.1005. [DOI] [PubMed] [Google Scholar]
  272. Xiong Y., Connolly T., Futcher B., Beach D. Human D-type cyclin. Cell. 1991 May 17;65(4):691–699. doi: 10.1016/0092-8674(91)90100-d. [DOI] [PubMed] [Google Scholar]
  273. Yan D. H., Weiss E. A., Nevins J. R. Identification of an activity in B-cell extracts that selectively impairs the formation of an immunoglobulin mu s poly(A) site processing complex. Mol Cell Biol. 1995 Apr;15(4):1901–1906. doi: 10.1128/mcb.15.4.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Yarden A., Salomon D., Geiger B. Zebrafish cyclin D1 is differentially expressed during early embryogenesis. Biochim Biophys Acta. 1995 Dec 27;1264(3):257–260. doi: 10.1016/0167-4781(95)00175-1. [DOI] [PubMed] [Google Scholar]
  275. Yuan D., Dang T., Sanderson C. Regulation of Ig H chain gene transcription by IL-5. J Immunol. 1990 Nov 15;145(10):3491–3496. [PubMed] [Google Scholar]
  276. Yuan D., Tucker P. W. Transcriptional regulation of the mu-delta heavy chain locus in normal murine B lymphocytes. J Exp Med. 1984 Aug 1;160(2):564–583. doi: 10.1084/jem.160.2.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Zhang F., Cole C. N. Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA. Mol Cell Biol. 1987 Sep;7(9):3277–3286. doi: 10.1128/mcb.7.9.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Zhang K., Saxon A., Max E. E. Two unusual forms of human immunoglobulin E encoded by alternative RNA splicing of epsilon heavy chain membrane exons. J Exp Med. 1992 Jul 1;176(1):233–243. doi: 10.1084/jem.176.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Zhao W., Manley J. L. Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol Cell Biol. 1996 May;16(5):2378–2386. doi: 10.1128/mcb.16.5.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. de Sauvage F., Kruys V., Marinx O., Huez G., Octave J. N. Alternative polyadenylation of the amyloid protein precursor mRNA regulates translation. EMBO J. 1992 Aug;11(8):3099–3103. doi: 10.1002/j.1460-2075.1992.tb05382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. von Lindern M., van Baal S., Wiegant J., Raap A., Hagemeijer A., Grosveld G. Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3' half to different genes: characterization of the set gene. Mol Cell Biol. 1992 Aug;12(8):3346–3355. doi: 10.1128/mcb.12.8.3346. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES