Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 1;25(13):2672–2678. doi: 10.1093/nar/25.13.2672

Characterization and mapping of the double-stranded regions involved in activation of PKR within a cellular RNA from 3T3-F442A cells.

R A Petryshyn 1, A G Ferrenz 1, J Li 1
PMCID: PMC146784  PMID: 9185580

Abstract

PKR is a doubled-stranded RNA-dependent protein kinase which is implicated in the regulation of several cellular processes, including cell proliferation. PKR undergoes phosphorylation and activation in mouse embryonic 3T3-F442A cells in response to endogenous RNA(s). Activation of PKR is related to growth and differentiation of these cells. A cellular regulatory RNA (R-RNA) which activates PKR has been isolated from these cells and its cDNA partially sequenced. Here we have characterized the R-RNA transcript with respect to nuclease sensitivity and the extent of double-stranded structure involved in activation of PKR. The location of the activating sequence was mapped to a contiguous 226/252 nt region of the R-RNA transcript by hybridization to its cDNA fragments. Hybridization with a panel of short oligodeoxynucleotides complementary to the R-RNA, coupled with protein kinase analysis, was used to probe the 252 nt region for critical sequences. Three short non-contiguous sequences which appear most important for activation of PKR were identified within the 252 nt region. Thus, these studies have identified specific sequences most important for activation of PKR. Furthermore, since the above antisense oligodeoxynucleotides inhibit enzyme activation, our results exemplify an unusual mode of action of antisense sequences on the activation of PKR by disruption of RNA secondary structure.

Full Text

The Full Text of this article is available as a PDF (134.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber G. N., Wambach M., Thompson S., Jagus R., Katze M. G. Mutants of the RNA-dependent protein kinase (PKR) lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation. Mol Cell Biol. 1995 Jun;15(6):3138–3146. doi: 10.1128/mcb.15.6.3138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baum E. Z., Ernst V. G. Inhibition of protein synthesis in reticulocyte lysates by a double-stranded RNA component in HeLa mRNA. Biochem Biophys Res Commun. 1983 Jul 18;114(1):41–49. doi: 10.1016/0006-291x(83)91591-7. [DOI] [PubMed] [Google Scholar]
  3. Belhumeur P., Lanoix J., Blais Y., Forget D., Steyaert A., Skup D. Action of spontaneously produced beta interferon in differentiation of embryonal carcinoma cells through an autoinduction mechanism. Mol Cell Biol. 1993 May;13(5):2846–2857. doi: 10.1128/mcb.13.5.2846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevilacqua P. C., Cech T. R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry. 1996 Aug 6;35(31):9983–9994. doi: 10.1021/bi9607259. [DOI] [PubMed] [Google Scholar]
  5. Bischoff J. R., Samuel C. E. Mechanism of interferon action. Activation of the human P1/eIF-2 alpha protein kinase by individual reovirus s-class mRNAs: s1 mRNA is a potent activator relative to s4 mRNA. Virology. 1989 Sep;172(1):106–115. doi: 10.1016/0042-6822(89)90112-8. [DOI] [PubMed] [Google Scholar]
  6. Clarke P. A., Schwemmle M., Schickinger J., Hilse K., Clemens M. J. Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res. 1991 Jan 25;19(2):243–248. doi: 10.1093/nar/19.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubois M. F., Hovanessian A. G., Bensaude O. Heat-shock-induced denaturation of proteins. Characterization of the insolubilization of the interferon-induced p68 kinase. J Biol Chem. 1991 May 25;266(15):9707–9711. [PubMed] [Google Scholar]
  8. Edery I., Petryshyn R., Sonenberg N. Activation of double-stranded RNA-dependent kinase (dsl) by the TAR region of HIV-1 mRNA: a novel translational control mechanism. Cell. 1989 Jan 27;56(2):303–312. doi: 10.1016/0092-8674(89)90904-5. [DOI] [PubMed] [Google Scholar]
  9. Farrell P. J., Balkow K., Hunt T., Jackson R. J., Trachsel H. Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell. 1977 May;11(1):187–200. doi: 10.1016/0092-8674(77)90330-0. [DOI] [PubMed] [Google Scholar]
  10. Fenster S. D., Wagner R. W., Froehler B. C., Chin D. J. Inhibition of human immunodeficiency virus type-1 env expression by C-5 propyne oligonucleotides specific for Rev-response element stem-loop V. Biochemistry. 1994 Jul 19;33(28):8391–8398. doi: 10.1021/bi00194a002. [DOI] [PubMed] [Google Scholar]
  11. Ghadge G. D., Malhotra P., Furtado M. R., Dhar R., Thimmapaya B. In vitro analysis of virus-associated RNA I (VAI RNA): inhibition of the double-stranded RNA-activated protein kinase PKR by VAI RNA mutants correlates with the in vivo phenotype and the structural integrity of the central domain. J Virol. 1994 Jul;68(7):4137–4151. doi: 10.1128/jvi.68.7.4137-4151.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hunter T., Hunt T., Jackson R. J., Robertson H. D. The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J Biol Chem. 1975 Jan 25;250(2):409–417. [PubMed] [Google Scholar]
  13. Jaramillo M. L., Abraham N., Bell J. C. The interferon system: a review with emphasis on the role of PKR in growth control. Cancer Invest. 1995;13(3):327–338. doi: 10.3109/07357909509094468. [DOI] [PubMed] [Google Scholar]
  14. Judware R., Li J., Petryshyn R. Inhibition of the dsRNA-dependent protein kinase by a peptide derived from the human immunodeficiency virus type 1 Tat protein. J Interferon Res. 1993 Apr;13(2):153–160. doi: 10.1089/jir.1993.13.153. [DOI] [PubMed] [Google Scholar]
  15. Judware R., Petryshyn R. Partial characterization of a cellular factor that regulates the double-stranded RNA-dependent eIF-2 alpha kinase in 3T3-F442A fibroblasts. Mol Cell Biol. 1991 Jun;11(6):3259–3267. doi: 10.1128/mcb.11.6.3259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kalvakolanu D. V., Borden E. C. An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest. 1996;14(1):25–53. doi: 10.3109/07357909609018435. [DOI] [PubMed] [Google Scholar]
  17. Kitajewski J., Schneider R. J., Safer B., Munemitsu S. M., Samuel C. E., Thimmappaya B., Shenk T. Adenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell. 1986 Apr 25;45(2):195–200. doi: 10.1016/0092-8674(86)90383-1. [DOI] [PubMed] [Google Scholar]
  18. Koromilas A. E., Roy S., Barber G. N., Katze M. G., Sonenberg N. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science. 1992 Sep 18;257(5077):1685–1689. doi: 10.1126/science.1382315. [DOI] [PubMed] [Google Scholar]
  19. Kumar A., Haque J., Lacoste J., Hiscott J., Williams B. R. Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6288–6292. doi: 10.1073/pnas.91.14.6288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lebleu B., Sen G. C., Shaila S., Cabrer B., Lengyel P. Interferon, double-stranded RNA, and protein phosphorylation. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3107–3111. doi: 10.1073/pnas.73.9.3107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li J., Petryshyn R. A. Activation of the double-stranded RNA-dependent eIF-2 alpha kinase by cellular RNA from 3T3-F442A cells. Eur J Biochem. 1991 Jan 1;195(1):41–48. doi: 10.1111/j.1432-1033.1991.tb15673.x. [DOI] [PubMed] [Google Scholar]
  22. Maitra R. K., McMillan N. A., Desai S., McSwiggen J., Hovanessian A. G., Sen G., Williams B. R., Silverman R. H. HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes. Virology. 1994 Nov 1;204(2):823–827. doi: 10.1006/viro.1994.1601. [DOI] [PubMed] [Google Scholar]
  23. Manche L., Green S. R., Schmedt C., Mathews M. B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol. 1992 Nov;12(11):5238–5248. doi: 10.1128/mcb.12.11.5238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maran A., Maitra R. K., Kumar A., Dong B., Xiao W., Li G., Williams B. R., Torrence P. F., Silverman R. H. Blockage of NF-kappa B signaling by selective ablation of an mRNA target by 2-5A antisense chimeras. Science. 1994 Aug 5;265(5173):789–792. doi: 10.1126/science.7914032. [DOI] [PubMed] [Google Scholar]
  25. McCarthy J. E., Kollmus H. Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends Biochem Sci. 1995 May;20(5):191–197. doi: 10.1016/s0968-0004(00)89006-4. [DOI] [PubMed] [Google Scholar]
  26. Mundschau L. J., Faller D. V. Platelet-derived growth factor signal transduction through the interferon-inducible kinase PKR. Immediate early gene induction. J Biol Chem. 1995 Feb 17;270(7):3100–3106. doi: 10.1074/jbc.270.7.3100. [DOI] [PubMed] [Google Scholar]
  27. Nekhai S., Kumar A., Bottaro D. P., Petryshyn R. Peptides derived from the interferon-induced PKR prevent activation by HIV-1 TAR RNA. Virology. 1996 Aug 1;222(1):193–200. doi: 10.1006/viro.1996.0410. [DOI] [PubMed] [Google Scholar]
  28. Pestka S., Langer J. A., Zoon K. C., Samuel C. E. Interferons and their actions. Annu Rev Biochem. 1987;56:727–777. doi: 10.1146/annurev.bi.56.070187.003455. [DOI] [PubMed] [Google Scholar]
  29. Petryshyn R. A., Li J., Judware R. Activation of the dsRNA-dependent kinase. Prog Mol Subcell Biol. 1994;14:1–14. doi: 10.1007/978-3-642-78549-8_1. [DOI] [PubMed] [Google Scholar]
  30. Petryshyn R., Chen J. J., Danley L., Matts R. L. Effect of interferon on protein translation during growth stages of 3T3 cells. Arch Biochem Biophys. 1996 Feb 15;326(2):290–297. doi: 10.1006/abbi.1996.0078. [DOI] [PubMed] [Google Scholar]
  31. Petryshyn R., Chen J. J., London I. M. Detection of activated double-stranded RNA-dependent protein kinase in 3T3-F442A cells. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1427–1431. doi: 10.1073/pnas.85.5.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Petryshyn R., Levin D. H., London I. M. Double-stranded RNA-dependent eIF-2alpha protein kinase. Methods Enzymol. 1983;99:346–362. doi: 10.1016/0076-6879(83)99070-5. [DOI] [PubMed] [Google Scholar]
  33. Pratt G., Galpine A., Sharp N., Palmer S., Clemens M. J. Regulation of in vitro translation by double-stranded RNA in mammalian cell mRNA preparations. Nucleic Acids Res. 1988 Apr 25;16(8):3497–3510. doi: 10.1093/nar/16.8.3497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roy S., Agy M., Hovanessian A. G., Sonenberg N., Katze M. G. The integrity of the stem structure of human immunodeficiency virus type 1 Tat-responsive sequence of RNA is required for interaction with the interferon-induced 68,000-Mr protein kinase. J Virol. 1991 Feb;65(2):632–640. doi: 10.1128/jvi.65.2.632-640.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Samuel C. E. The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem. 1993 Apr 15;268(11):7603–7606. [PubMed] [Google Scholar]
  36. Sen G. C., Lengyel P. The interferon system. A bird's eye view of its biochemistry. J Biol Chem. 1992 Mar 15;267(8):5017–5020. [PubMed] [Google Scholar]
  37. SenGupta D. N., Silverman R. H. Activation of interferon-regulated, dsRNA-dependent enzymes by human immunodeficiency virus-1 leader RNA. Nucleic Acids Res. 1989 Feb 11;17(3):969–978. doi: 10.1093/nar/17.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thomis D. C., Samuel C. E. Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J Virol. 1993 Dec;67(12):7695–7700. doi: 10.1128/jvi.67.12.7695-7700.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tonkinson J. L., Stein C. A. Antisense oligodeoxynucleotides as clinical therapeutic agents. Cancer Invest. 1996;14(1):54–65. doi: 10.3109/07357909609018436. [DOI] [PubMed] [Google Scholar]
  40. de Haro C., Méndez R., Santoyo J. The eIF-2alpha kinases and the control of protein synthesis. FASEB J. 1996 Oct;10(12):1378–1387. doi: 10.1096/fasebj.10.12.8903508. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES