Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Aug;193(Pt 2):203–214. doi: 10.1046/j.1469-7580.1998.19320203.x

The distribution of cartilage thickness within the joints of the lower limb of elderly individuals

CHRISTOPH ADAM 1, FELIX ECKSTEIN 1,, STEFAN MILZ 1, REINHARD PUTZ 1
PMCID: PMC1467840  PMID: 9827636

Abstract

The objective of this study was to investigate the normal distribution of cartilage thickness in the major joints of the lower limb in elderly individuals. A 12.5 MHz ultrasound transducer was used to measure the cartilage thickness in the right and left hip, knee and ankle joint of 10 individuals aged between 62 and 99 y. Distribution patterns of cartilage thickness were derived by b-spline interpolation and the average distribution computed in each surface. The maximum cartilage thickness in the hip joint was 2.6 (±0.36) mm and the mean thickness 1.3 (±0.17) mm. The CV% (a measure of thickness inhomogeneity within the joint surface) was 32%. In the knee, the maximal and mean values were 3.8 (±0.46) mm and 1.9 mm (±0.24) mm, respectively (CV%=34%), and in the ankle 1.7 (±0.25) mm and 1.0 (±0.16) mm (CV%=32%). Systematic differences existed between both sides in the knee, the distal femur showing a significantly greater thickness on the right. While the mean and maximal thicknesses were systematically higher in the knee than in the hip, and in the hip higher than in the ankle (P<0.05), there were no systematic differences in the thickness inhomogeneity of the 3 joints. Only the malleolus showed a somewhat more uniform thickness than the other joint surfaces. The variablity between individuals was similar for all joints for mean thickness, but the interindividual variability of the maximal thickness values was highest in the knee and lowest in the ankle. Whereas the cartilage thickness distributions in the joints of the lower limb have been suggested to reflect the pressure distribution within the articular surface, the absolute thickness is proposed to be a function of dynamic loading (range of motion) during gait, rather than being a reflection of the static articular pressure.

Keywords: Articular cartilage, hip joint, knee joint, ankle joint, ageing, ultrasound, functional adaptation, computer models, biomechanics

Full Text

The Full Text of this article is available as a PDF (383.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam C., Eckstein F., Milz S., Schulte E., Becker C., Putz R. The distribution of cartilage thickness in the knee-joints of old-aged individuals -- measurement by A-mode ultrasound. Clin Biomech (Bristol, Avon) 1998 Jan;13(1):1–10. doi: 10.1016/s0268-0033(97)85881-0. [DOI] [PubMed] [Google Scholar]
  2. Ahmed A. M., Burke D. L. In-vitro measurement of static pressure distribution in synovial joints--Part I: Tibial surface of the knee. J Biomech Eng. 1983 Aug;105(3):216–225. doi: 10.1115/1.3138409. [DOI] [PubMed] [Google Scholar]
  3. Ahmed A. M., Burke D. L., Yu A. In-vitro measurement of static pressure distribution in synovial joints--Part II: Retropatellar surface. J Biomech Eng. 1983 Aug;105(3):226–236. doi: 10.1115/1.3138410. [DOI] [PubMed] [Google Scholar]
  4. Armstrong C. G., Gardner D. L. Thickness and distribution of human femoral head articular cartilage. Changes with age. Ann Rheum Dis. 1977 Oct;36(5):407–412. doi: 10.1136/ard.36.5.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ateshian G. A., Soslowsky L. J., Mow V. C. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. J Biomech. 1991;24(8):761–776. doi: 10.1016/0021-9290(91)90340-s. [DOI] [PubMed] [Google Scholar]
  6. Bergmann G., Graichen F., Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993 Aug;26(8):969–990. doi: 10.1016/0021-9290(93)90058-m. [DOI] [PubMed] [Google Scholar]
  7. Blankevoort L., Kuiper J. H., Huiskes R., Grootenboer H. J. Articular contact in a three-dimensional model of the knee. J Biomech. 1991;24(11):1019–1031. doi: 10.1016/0021-9290(91)90019-j. [DOI] [PubMed] [Google Scholar]
  8. Bruns J., Volkmer M., Luessenhop S. Pressure distribution at the knee joint. Influence of varus and valgus deviation without and with ligament dissection. Arch Orthop Trauma Surg. 1993;113(1):12–19. doi: 10.1007/BF00440588. [DOI] [PubMed] [Google Scholar]
  9. Carter D. R. Mechanical loading history and skeletal biology. J Biomech. 1987;20(11-12):1095–1109. doi: 10.1016/0021-9290(87)90027-3. [DOI] [PubMed] [Google Scholar]
  10. Eckstein F., Adam C., Sittek H., Becker C., Milz S., Schulte E., Reiser M., Putz R. Non-invasive determination of cartilage thickness throughout joint surfaces using magnetic resonance imaging. J Biomech. 1997 Mar;30(3):285–289. doi: 10.1016/s0021-9290(97)81146-3. [DOI] [PubMed] [Google Scholar]
  11. Eckstein F., Löhe F., Hillebrand S., Bergmann M., Schulte E., Milz S., Putz R. Morphomechanics of the humero-ulnar joint: I. Joint space width and contact areas as a function of load and flexion angle. Anat Rec. 1995 Nov;243(3):318–326. doi: 10.1002/ar.1092430306. [DOI] [PubMed] [Google Scholar]
  12. Eckstein F., Löhe F., Schulte E., Müller-Gerbl M., Milz S., Putz R. Physiological incongruity of the humero-ulnar joint: a functional principle of optimized stress distribution acting upon articulating surfaces? Anat Embryol (Berl) 1993 Nov;188(5):449–455. doi: 10.1007/BF00190139. [DOI] [PubMed] [Google Scholar]
  13. Eckstein F., Müller-Gerbl M., Putz R. Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat. 1992 Jun;180(Pt 3):425–433. [PMC free article] [PubMed] [Google Scholar]
  14. Eckstein F., von Eisenhart-Rothe R., Landgraf J., Adam C., Loehe F., Müller-Gerbl M., Putz R. Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint. Acta Anat (Basel) 1997;158(3):192–204. doi: 10.1159/000147930. [DOI] [PubMed] [Google Scholar]
  15. Hayes W. C., Keer L. M., Herrmann G., Mockros L. F. A mathematical analysis for indentation tests of articular cartilage. J Biomech. 1972 Sep;5(5):541–551. doi: 10.1016/0021-9290(72)90010-3. [DOI] [PubMed] [Google Scholar]
  16. Heegaard J., Leyvraz P. F., Curnier A., Rakotomanana L., Huiskes R. The biomechanics of the human patella during passive knee flexion. J Biomech. 1995 Nov;28(11):1265–1279. doi: 10.1016/0021-9290(95)00059-q. [DOI] [PubMed] [Google Scholar]
  17. Hehne H. J. Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res. 1990 Sep;(258):73–85. [PubMed] [Google Scholar]
  18. Hodler J., Trudell D., Pathria M. N., Resnick D. Width of the articular cartilage of the hip: quantification by using fat-suppression spin-echo MR imaging in cadavers. AJR Am J Roentgenol. 1992 Aug;159(2):351–355. doi: 10.2214/ajr.159.2.1632354. [DOI] [PubMed] [Google Scholar]
  19. Huberti H. H., Hayes W. C. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am. 1984 Jun;66(5):715–724. [PubMed] [Google Scholar]
  20. Jurvelin J. S., Räsänen T., Kolmonen P., Lyyra T. Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J Biomech. 1995 Feb;28(2):231–235. doi: 10.1016/0021-9290(94)00060-h. [DOI] [PubMed] [Google Scholar]
  21. Jurvelin J., Kiviranta I., Tammi M., Helminen J. H. Softening of canine articular cartilage after immobilization of the knee joint. Clin Orthop Relat Res. 1986 Jun;(207):246–252. [PubMed] [Google Scholar]
  22. Karvonen R. L., Negendank W. G., Teitge R. A., Reed A. H., Miller P. R., Fernandez-Madrid F. Factors affecting articular cartilage thickness in osteoarthritis and aging. J Rheumatol. 1994 Jul;21(7):1310–1318. [PubMed] [Google Scholar]
  23. Kiviranta I., Jurvelin J., Tammi M., Sämänen A. M., Helminen H. J. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum. 1987 Jul;30(7):801–809. doi: 10.1002/art.1780300710. [DOI] [PubMed] [Google Scholar]
  24. Kiviranta I., Tammi M., Jurvelin J., Arokoski J., Sämänen A. M., Helminen H. J. Articular cartilage thickness and glycosaminoglycan distribution in the young canine knee joint after remobilization of the immobilized limb. J Orthop Res. 1994 Mar;12(2):161–167. doi: 10.1002/jor.1100120203. [DOI] [PubMed] [Google Scholar]
  25. Kurrat H. J. Die Beanspruchung des menschlichen Hüftgelenks. VI. Eine funktionelle Analyse der Knorpeldickenverteilung am menschlichen Femurkopf. Anat Embryol (Berl) 1977 Mar 30;150(2):129–140. doi: 10.1007/BF00316645. [DOI] [PubMed] [Google Scholar]
  26. Kurrat H. J., Oberländer W. The thickness of the cartilage in the hip joint. J Anat. 1978 May;126(Pt 1):145–155. [PMC free article] [PubMed] [Google Scholar]
  27. Lee D. A., Bader D. L. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res. 1997 Mar;15(2):181–188. doi: 10.1002/jor.1100150205. [DOI] [PubMed] [Google Scholar]
  28. Lyyra T., Jurvelin J., Pitkänen P., Vätäinen U., Kiviranta I. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys. 1995 Jul;17(5):395–399. doi: 10.1016/1350-4533(95)97322-g. [DOI] [PubMed] [Google Scholar]
  29. Meachim G., Bentley G., Baker R. Effect of age on thickness of adult patellar articular cartilage. Ann Rheum Dis. 1977 Dec;36(6):563–568. doi: 10.1136/ard.36.6.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Milz S., Eckstein F., Putz R. The thickness of the subchondral plate and its correlation with the thickness of the uncalcified articular cartilage in the human patella. Anat Embryol (Berl) 1995 Nov;192(5):437–444. doi: 10.1007/BF00240376. [DOI] [PubMed] [Google Scholar]
  31. Milz S., Eckstein F., Putz R. Thickness distribution of the subchondral mineralization zone of the trochlear notch and its correlation with the cartilage thickness: an expression of functional adaptation to mechanical stress acting on the humeroulnar joint? Anat Rec. 1997 Jun;248(2):189–197. doi: 10.1002/(SICI)1097-0185(199706)248:2<189::AID-AR5>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  32. Milz S., Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat. 1994 Aug;185(Pt 1):103–110. [PMC free article] [PubMed] [Google Scholar]
  33. Modest V. E., Murphy M. C., Mann R. W. Optical verification of a technique for in situ ultrasonic measurement of articular cartilage thickness. J Biomech. 1989;22(2):171–176. doi: 10.1016/0021-9290(89)90041-9. [DOI] [PubMed] [Google Scholar]
  34. Müller-Gerbl M., Schulte E., Putz R. The thickness of the calcified layer of articular cartilage: a function of the load supported? J Anat. 1987 Oct;154:103–111. [PMC free article] [PubMed] [Google Scholar]
  35. Riede U. N., Heitz P., Ruedi T. Gelenkmechanische Untersuchungen zum Problem der posttraumatischen Arthrosen im oberen Sprunggelenk. II. Einfluss der Talusform auf die Biomechanik des oberen Sprunggelenkes. Langenbecks Arch Chir. 1971;330(2):174–184. doi: 10.1007/BF01234138. [DOI] [PubMed] [Google Scholar]
  36. Rushfeldt P. D., Mann R. W., Harris W. H. Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum--I. Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness. J Biomech. 1981;14(4):253–260. doi: 10.1016/0021-9290(81)90070-1. [DOI] [PubMed] [Google Scholar]
  37. Sah R. L., Kim Y. J., Doong J. Y., Grodzinsky A. J., Plaas A. H., Sandy J. D. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res. 1989;7(5):619–636. doi: 10.1002/jor.1100070502. [DOI] [PubMed] [Google Scholar]
  38. Simon W. H., Friedenberg S., Richardson S. Joint congruence. A correlation of joint congruence and thickness of articular cartilage in dogs. J Bone Joint Surg Am. 1973 Dec;55(8):1614–1620. [PubMed] [Google Scholar]
  39. Simon W. H. Scale effects in animal joints. I. Articular cartilage thickness and compressive stress. Arthritis Rheum. 1970 May-Jun;13(3):244–256. doi: 10.1002/art.1780130305. [DOI] [PubMed] [Google Scholar]
  40. Urban J. P. The chondrocyte: a cell under pressure. Br J Rheumatol. 1994 Oct;33(10):901–908. doi: 10.1093/rheumatology/33.10.901. [DOI] [PubMed] [Google Scholar]
  41. Widmer K. H., Zurfluh B., Morscher E. W. Kontaktfläche und Druckbelastung im Implantat-Knochen-Interface bei Press-Fit-Hüftpfannen im Vergleich zum natürlichen Hüftgelenk. Orthopade. 1997 Feb;26(2):181–189. doi: 10.1007/s001320050084. [DOI] [PubMed] [Google Scholar]
  42. Wong M., Carter D. R. A theoretical model of endochondral ossification and bone architectural construction in long bone ontogeny. Anat Embryol (Berl) 1990;181(6):523–532. doi: 10.1007/BF00174625. [DOI] [PubMed] [Google Scholar]
  43. von Eisenhart-Rothe R., Eckstein F., Müller-Gerbl M., Landgraf J., Rock C., Putz R. Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens. Anat Embryol (Berl) 1997 Mar;195(3):279–288. doi: 10.1007/s004290050047. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES