Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Aug;193(Pt 2):241–249. doi: 10.1046/j.1469-7580.1998.19320241.x

The innervation of rainbow trout (Oncorhynchus mykiss) liver: protein gene product 9.5 and neuronal nitric oxide synthase immunoreactivities

F J ESTEBAN 1 , A JIMÉNEZ 1 , J B BARROSO 1 , J A PEDROSA 1 , M L DEL MORAL 1 , J RODRIGO 2 , M A PEINADO 1 ,
PMCID: PMC1467844  PMID: 9827640

Abstract

We have explored the innervation of the rainbow trout (O. mykiss) liver using immunohistochemical procedures and light microscopy to detect in situ protein gene product 9.5 and neuronal nitric oxide synthase immunoreactivities (PGP-IR and NOS-IR). The results showed PGP-IR nerve fibres running with the extralobular biliary duct (EBD), hepatic artery (EHA) and portal vein (EPV) that form the hepatic hilum, as well as following the spatial distribution of the intrahepatic blood vessel and biliary channels. These nerve fibres appear as single varicose processes, thin bundles, or thick bundles depending on their diameter and location in the wall of the blood vessel or biliary duct. No PGP-IR fibres were detected in the liver parenchyma. NOS-IR nerve fibres were located only in the vessels and ducts that form the hepatic hilum (EBD, EHA, EPV); in addition, NOS-IR nerve cell bodies were found isolated or forming ganglionated plexuses in the peribiliary fibromuscular tissue of the EBD. No PGP-IR ganglionated plexuses were detected in the EBD. The location of the general (PGP-IR) and nitrergic (nNOS-IR) intrinsic nerves of the trout liver suggest a conserved evolutionary role of the nervous control of hepatic blood flow and hepatobiliary activity.

Keywords: Autonomic nervous system, hepatobiliary system, hepatic artery, portal vein

Full Text

The Full Text of this article is available as a PDF (688.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandaletova T., Brouet I., Bartsch H., Sugimura T., Esumi H., Ohshima H. Immunohistochemical localization of an inducible form of nitric oxide synthase in various organs of rats treated with Propionibacterium acnes and lipopolysaccharide. APMIS. 1993 Apr;101(4):330–336. [PubMed] [Google Scholar]
  2. Belai A., Cooper S., Burnstock G. Effect of age on NADPH-diaphorase-containing myenteric neurones of rat ileum and proximal colon. Cell Tissue Res. 1995 Feb;279(2):379–383. doi: 10.1007/BF00318495. [DOI] [PubMed] [Google Scholar]
  3. Belai A., Schmidt H. H., Hoyle C. H., Hassall C. J., Saffrey M. J., Moss J., Förstermann U., Murad F., Burnstock G. Colocalization of nitric oxide synthase and NADPH-diaphorase in the myenteric plexus of the rat gut. Neurosci Lett. 1992 Aug 31;143(1-2):60–64. doi: 10.1016/0304-3940(92)90233-w. [DOI] [PubMed] [Google Scholar]
  4. Berthoud H. R., Kressel M., Neuhuber W. L. An anterograde tracing study of the vagal innervation of rat liver, portal vein and biliary system. Anat Embryol (Berl) 1992 Oct;186(5):431–442. doi: 10.1007/BF00185458. [DOI] [PubMed] [Google Scholar]
  5. Berthoud H. R., Kressel M., Neuhuber W. L. Vagal afferent innervation of rat abdominal paraganglia as revealed by anterograde DiI-tracing and confocal microscopy. Acta Anat (Basel) 1995;152(2):127–132. doi: 10.1159/000147691. [DOI] [PubMed] [Google Scholar]
  6. Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
  7. Brizzolara A. L., Crowe R., Burnstock G. Evidence for the involvement of both ATP and nitric oxide in non-adrenergic, non-cholinergic inhibitory neurotransmission in the rabbit portal vein. Br J Pharmacol. 1993 Jul;109(3):606–608. doi: 10.1111/j.1476-5381.1993.tb13614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esteban F. J., Pedrosa J. A., Jiménez A., Fernández A. P., Bentura M. L., Martínez-Murillo R., Rodrigo J., Peinado M. A. Distribution of neuronal nitric oxide synthase in the rat liver. Neurosci Lett. 1997 Apr 25;226(2):99–102. doi: 10.1016/s0304-3940(97)00262-0. [DOI] [PubMed] [Google Scholar]
  9. Esteban F. J., Pedrosa J. A., Jiménez A., del Moral M. L., Rodrigo J., Peinado M. A. Nitrergic innervation of the cat liver. Neurosci Lett. 1998 Feb 27;243(1-3):45–48. doi: 10.1016/s0304-3940(98)00083-4. [DOI] [PubMed] [Google Scholar]
  10. Furness J. B., Li Z. S., Young H. M., Förstermann U. Nitric oxide synthase in the enteric nervous system of the guinea-pig: a quantitative description. Cell Tissue Res. 1994 Jul;277(1):139–149. doi: 10.1007/BF00303090. [DOI] [PubMed] [Google Scholar]
  11. Geller D. A., Nussler A. K., Di Silvio M., Lowenstein C. J., Shapiro R. A., Wang S. C., Simmons R. L., Billiar T. R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522–526. doi: 10.1073/pnas.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goehler L. E., Sternini C., Brecha N. C. Calcitonin gene-related peptide immunoreactivity in the biliary pathway and liver of the guinea-pig: distribution and colocalization with substance P. Cell Tissue Res. 1988 Jul;253(1):145–150. doi: 10.1007/BF00221749. [DOI] [PubMed] [Google Scholar]
  13. Goehler L. E., Sternini C. Calcitonin gene-related peptide innervation of the rat hepatobiliary system. Peptides. 1996;17(2):209–217. doi: 10.1016/0196-9781(95)02126-4. [DOI] [PubMed] [Google Scholar]
  14. Griffith O. W., Stuehr D. J. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736. doi: 10.1146/annurev.ph.57.030195.003423. [DOI] [PubMed] [Google Scholar]
  15. Gulbenkian S., Wharton J., Polak J. M. The visualisation of cardiovascular innervation in the guinea pig using an antiserum to protein gene product 9.5 (PGP 9.5). J Auton Nerv Syst. 1987 Mar;18(3):235–247. doi: 10.1016/0165-1838(87)90122-6. [DOI] [PubMed] [Google Scholar]
  16. Jackson P., Thomson V. M., Thompson R. J. A comparison of the evolutionary distribution of the two neuroendocrine markers, neurone-specific enolase and protein gene product 9.5. J Neurochem. 1985 Jul;45(1):185–190. doi: 10.1111/j.1471-4159.1985.tb05491.x. [DOI] [PubMed] [Google Scholar]
  17. Karila P, Holmgren S. Enteric reflexes and nitric oxide in the fish intestine. J Exp Biol. 1995;198(Pt 11):2405–2412. doi: 10.1242/jeb.198.11.2405. [DOI] [PubMed] [Google Scholar]
  18. Li Z. S., Furness J. B. Nitric oxide synthase in the enteric nervous system of the rainbow trout, Salmo gairdneri. Arch Histol Cytol. 1993 Jun;56(2):185–193. doi: 10.1679/aohc.56.185. [DOI] [PubMed] [Google Scholar]
  19. Li Z. S., Furness J. B., Young H. M., Campbell G. Nitric oxide synthase immunoactivity and NADPH diaphorase enzyme activity in neurons of the gastrointestinal tract of the toad, Bufo marinus. Arch Histol Cytol. 1992 Oct;55(4):333–350. doi: 10.1679/aohc.55.333. [DOI] [PubMed] [Google Scholar]
  20. Li Z. S., Young H. M., Furness J. B. Nitric oxide synthase in neurons of the gastrointestinal tract of an avian species, Coturnix coturnix. J Anat. 1994 Apr;184(Pt 2):261–272. [PMC free article] [PubMed] [Google Scholar]
  21. Lin Y. S., Nosaka S., Amakata Y., Maeda T. Comparative study of the mammalian liver innervation: an immunohistochemical study of protein gene product 9.5, dopamine beta-hydroxylase and tyrosine hydroxylase. Comp Biochem Physiol A Physiol. 1995 Apr;110(4):289–298. doi: 10.1016/0300-9629(94)00189-z. [DOI] [PubMed] [Google Scholar]
  22. Mawe G. M., Gershon M. D. Structure, afferent innervation, and transmitter content of ganglia of the guinea pig gallbladder: relationship to the enteric nervous system. J Comp Neurol. 1989 May 15;283(3):374–390. doi: 10.1002/cne.902830306. [DOI] [PubMed] [Google Scholar]
  23. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  24. Murphy S., Li Z. S., Furness J. B., Campbell G. Projections of nitric oxide synthase- and peptide-containing neurons in the small and large intestines of the toad (Bufo marinus). J Auton Nerv Syst. 1994 Jan-Feb;46(1-2):75–92. doi: 10.1016/0165-1838(94)90146-5. [DOI] [PubMed] [Google Scholar]
  25. Rand M. J., Li C. G. Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu Rev Physiol. 1995;57:659–682. doi: 10.1146/annurev.ph.57.030195.003303. [DOI] [PubMed] [Google Scholar]
  26. Rand M. J. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol. 1992 Mar;19(3):147–169. doi: 10.1111/j.1440-1681.1992.tb00433.x. [DOI] [PubMed] [Google Scholar]
  27. Riveros-Moreno V., Beddell C., Moncada S. Nitric oxide synthase. Structural studies using anti-peptide antibodies. Eur J Biochem. 1993 Aug 1;215(3):801–808. doi: 10.1111/j.1432-1033.1993.tb18095.x. [DOI] [PubMed] [Google Scholar]
  28. Rode J., Dhillon A. P., Doran J. F., Jackson P., Thompson R. J. PGP 9.5, a new marker for human neuroendocrine tumours. Histopathology. 1985 Feb;9(2):147–158. doi: 10.1111/j.1365-2559.1985.tb02431.x. [DOI] [PubMed] [Google Scholar]
  29. Siou G. P., Belai A., Burnstock G. A developmental study of the localization of NADPH-diaphorase in the ganglionated plexus of the guinea-pig gallbladder. Cell Tissue Res. 1994 Apr;276(1):61–68. doi: 10.1007/BF00354785. [DOI] [PubMed] [Google Scholar]
  30. Springall D. R., Riveros-Moreno V., Buttery L., Suburo A., Bishop A. E., Merrett M., Moncada S., Polak J. M. Immunological detection of nitric oxide synthase(s) in human tissues using heterologous antibodies suggesting different isoforms. Histochemistry. 1992 Nov;98(4):259–266. doi: 10.1007/BF00271040. [DOI] [PubMed] [Google Scholar]
  31. Talmage E. K., Mawe G. M. NADPH-diaphorase and VIP are co-localized in neurons of gallbladder ganglia. J Auton Nerv Syst. 1993 Apr;43(1):83–89. doi: 10.1016/0165-1838(93)90324-n. [DOI] [PubMed] [Google Scholar]
  32. Thompson R. J., Doran J. F., Jackson P., Dhillon A. P., Rode J. PGP 9.5--a new marker for vertebrate neurons and neuroendocrine cells. Brain Res. 1983 Nov 14;278(1-2):224–228. doi: 10.1016/0006-8993(83)90241-x. [DOI] [PubMed] [Google Scholar]
  33. Ward S. M., Xue C., Shuttleworth C. W., Bredt D. S., Snyder S. H., Sanders K. M. NADPH diaphorase and nitric oxide synthase colocalization in enteric neurons of canine proximal colon. Am J Physiol. 1992 Aug;263(2 Pt 1):G277–G284. doi: 10.1152/ajpgi.1992.263.2.G277. [DOI] [PubMed] [Google Scholar]
  34. Young H. M., Furness J. B., Shuttleworth C. W., Bredt D. S., Snyder S. H. Co-localization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry. 1992 May;97(4):375–378. doi: 10.1007/BF00270041. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES