Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Aug;193(Pt 2):273–281. doi: 10.1046/j.1469-7580.1998.19320273.x

NT-3 modulates NPY expression in primary sensory neurons following peripheral nerve injury

G D STERNE 1 , R A BROWN 2 , C J GREEN 1 , G TERENGHI 1 ,
PMCID: PMC1467846  PMID: 9827642

Abstract

Peripheral nerve transection induces significant changes in neuropeptide expression and content in injured primary sensory neurons, possibly due to loss of target derived neurotrophic support. This study shows that neurotrophin-3 (NT-3) delivery to the injured nerve influences neuropeptide Y (NPY) expression within dorsal root ganglia (DRG) neurons. NT-3 was delivered by grafting impregnated fibronectin (500 ng/ml; NT group) in the axotomised sciatic nerve. Animals grafted with plain fibronectin mats (FN) or nerve grafts (NG) were used as controls. L4 and L5 DRG from operated and contralateral sides were harvested between 5 and 240 d. Using immunohistochemistry and computerised image analysis the percentage, diameter and optical density of neurons expressing calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP) and NPY were quantified. Sciatic nerve axotomy resulted in significant reduction in expression of CGRP and SP, and significant upregulation of VIP and NPY (P<0.05 for ipsilateral vs contralateral DRG). By d 30, exogenous NT-3 and nerve graft attenuated the upregulation of NPY (P<0.05 for NT and NG vs FN). However, NT-3 administration did not influence the expression of CGRP, SP or VIP. The mean cell diameter of NPY immunoreactive neurons was significantly smaller in the NT-3 group (P<0.05 for NT vs FN and NG) suggesting a differential influence of NT-3 on larger neurons. The optical densities of NPY immunoreactive neurons of equal size were the same in each group at any time point, indicating that the neurons responding to NT-3 downregulate NPY expression to levels not detectable by immunohistochemistry. These results demonstrate that targeted administration of NT-3 regulates the phenotype of a NPY-immunoreactive neuronal subpopulation in the dorsal root ganglia, a further evidence of the trophic role of neurotrophins on primary sensory neurons.

Keywords: Dorsal root ganglia, nerve regeneration, fibronectin, neuropeptides, trophic factors

Full Text

The Full Text of this article is available as a PDF (301.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand P., Gibson S. J., McGregor G. P., Blank M. A., Ghatei M. A., Bacarese-Hamilton A. J., Polak J. M., Bloom S. R. A VIP-containing system concentrated in the lumbosacral region of human spinal cord. Nature. 1983 Sep 8;305(5930):143–145. doi: 10.1038/305143a0. [DOI] [PubMed] [Google Scholar]
  2. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol. 1994 Nov;25(11):1386–1403. doi: 10.1002/neu.480251107. [DOI] [PubMed] [Google Scholar]
  3. Bisby M. A., Keen P. Regeneration of primary afferent neurons containing substance P-like immunoreactivity. Brain Res. 1986 Feb 12;365(1):85–95. doi: 10.1016/0006-8993(86)90725-0. [DOI] [PubMed] [Google Scholar]
  4. Coggeshall R. E., Pover C. M., Fitzgerald M. Dorsal root ganglion cell death and surviving cell numbers in relation to the development of sensory innervation in the rat hindlimb. Brain Res Dev Brain Res. 1994 Oct 14;82(1-2):193–212. doi: 10.1016/0165-3806(94)90163-5. [DOI] [PubMed] [Google Scholar]
  5. DiStefano P. S., Friedman B., Radziejewski C., Alexander C., Boland P., Schick C. M., Lindsay R. M., Wiegand S. J. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron. 1992 May;8(5):983–993. doi: 10.1016/0896-6273(92)90213-w. [DOI] [PubMed] [Google Scholar]
  6. Duggan A. W., Hope P. J., Lang C. W. Microinjection of neuropeptide Y into the superficial dorsal horn reduces stimulus-evoked release of immunoreactive substance P in the anaesthetized cat. Neuroscience. 1991;44(3):733–740. doi: 10.1016/0306-4522(91)90092-3. [DOI] [PubMed] [Google Scholar]
  7. Dumoulin F. L., Raivich G., Haas C. A., Lazar P., Reddington M., Streit W. J., Kreutzberg G. W. Calcitonin gene-related peptide and peripheral nerve regeneration. Ann N Y Acad Sci. 1992 Jun 30;657:351–360. doi: 10.1111/j.1749-6632.1992.tb22782.x. [DOI] [PubMed] [Google Scholar]
  8. Eriksson N. P., Lindsay R. M., Aldskogius H. BDNF and NT-3 rescue sensory but not motoneurones following axotomy in the neonate. Neuroreport. 1994 Jul 21;5(12):1445–1448. [PubMed] [Google Scholar]
  9. Ernfors P., Lee K. F., Kucera J., Jaenisch R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell. 1994 May 20;77(4):503–512. doi: 10.1016/0092-8674(94)90213-5. [DOI] [PubMed] [Google Scholar]
  10. Fitzgerald M., Wall P. D., Goedert M., Emson P. C. Nerve growth factor counteracts the neurophysiological and neurochemical effects of chronic sciatic nerve section. Brain Res. 1985 Apr 15;332(1):131–141. doi: 10.1016/0006-8993(85)90396-8. [DOI] [PubMed] [Google Scholar]
  11. Franco-Cereceda A., Rydh M., Dalsgaard C. J. Nicotine- and capsaicin-, but not potassium-evoked CGP-release from cultured guinea-pig spinal ganglia is inhibited by Ruthenium red. Neurosci Lett. 1992 Mar 16;137(1):72–74. doi: 10.1016/0304-3940(92)90301-m. [DOI] [PubMed] [Google Scholar]
  12. Houchmandzadeh B., Marko J. F., Chatenay D., Libchaber A. Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration. J Cell Biol. 1997 Oct 6;139(1):1–12. doi: 10.1083/jcb.139.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hua X. Y., Boublik J. H., Spicer M. A., Rivier J. E., Brown M. R., Yaksh T. L. The antinociceptive effects of spinally administered neuropeptide Y in the rat: systematic studies on structure-activity relationship. J Pharmacol Exp Ther. 1991 Jul 1;258(1):243–248. [PubMed] [Google Scholar]
  14. Hökfelt T., Zhang X., Verge V., Villar M., Elde R., Bartfai T., Xu X. J., Wiesenfeld-Hallin Z. Coexistence and interaction of neuropeptides with substance P in primary sensory neurons, with special reference to galanin. Regul Pept. 1993 Jul 2;46(1-2):76–80. doi: 10.1016/0167-0115(93)90015-z. [DOI] [PubMed] [Google Scholar]
  15. Kar S., Quirion R. Quantitative autoradiographic localization of [125I]neuropeptide Y receptor binding sites in rat spinal cord and the effects of neonatal capsaicin, dorsal rhizotomy and peripheral axotomy. Brain Res. 1992 Mar 6;574(1-2):333–337. doi: 10.1016/0006-8993(92)90836-x. [DOI] [PubMed] [Google Scholar]
  16. Kashiba H., Noguchi K., Ueda Y., Senba E. Coexpression of trk family members and low-affinity neurotrophin receptors in rat dorsal root ganglion neurons. Brain Res Mol Brain Res. 1995 May;30(1):158–164. doi: 10.1016/0169-328x(94)00249-e. [DOI] [PubMed] [Google Scholar]
  17. Kashiba H., Senba E., Kawai Y., Ueda Y., Tohyama M. Axonal blockade induces the expression of vasoactive intestinal polypeptide and galanin in rat dorsal root ganglion neurons. Brain Res. 1992 Apr 10;577(1):19–28. doi: 10.1016/0006-8993(92)90532-e. [DOI] [PubMed] [Google Scholar]
  18. Kashiba H., Ueda Y., Senba E. Coexpression of preprotachykinin-A, alpha-calcitonin gene-related peptide, somatostatin, and neurotrophin receptor family messenger RNAs in rat dorsal root ganglion neurons. Neuroscience. 1996 Jan;70(1):179–189. doi: 10.1016/0306-4522(95)00334-f. [DOI] [PubMed] [Google Scholar]
  19. Klein R., Silos-Santiago I., Smeyne R. J., Lira S. A., Brambilla R., Bryant S., Zhang L., Snider W. D., Barbacid M. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature. 1994 Mar 17;368(6468):249–251. doi: 10.1038/368249a0. [DOI] [PubMed] [Google Scholar]
  20. Knyihár-Csillik E., Kreutzberg G. W., Raivich G., Csillik B. Vasoactive intestinal polypeptide in dorsal root terminals of the rat spinal cord is regulated by the axoplasmic transport in the peripheral nerve. Neurosci Lett. 1991 Sep 30;131(1):83–87. doi: 10.1016/0304-3940(91)90342-q. [DOI] [PubMed] [Google Scholar]
  21. Lefcort F., Clary D. O., Rusoff A. C., Reichardt L. F. Inhibition of the NT-3 receptor TrkC, early in chick embryogenesis, results in severe reductions in multiple neuronal subpopulations in the dorsal root ganglia. J Neurosci. 1996 Jun 1;16(11):3704–3713. doi: 10.1523/JNEUROSCI.16-11-03704.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lewin G. R. Neurotrophins and the specification of neuronal phenotype. Philos Trans R Soc Lond B Biol Sci. 1996 Mar 29;351(1338):405–411. doi: 10.1098/rstb.1996.0035. [DOI] [PubMed] [Google Scholar]
  23. Lindsay R. M., Harmar A. J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature. 1989 Jan 26;337(6205):362–364. doi: 10.1038/337362a0. [DOI] [PubMed] [Google Scholar]
  24. Lindsay R. M. Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview. Philos Trans R Soc Lond B Biol Sci. 1996 Mar 29;351(1338):365–373. doi: 10.1098/rstb.1996.0030. [DOI] [PubMed] [Google Scholar]
  25. Maisonpierre P. C., Belluscio L., Squinto S., Ip N. Y., Furth M. E., Lindsay R. M., Yancopoulos G. D. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990 Mar 23;247(4949 Pt 1):1446–1451. doi: 10.1126/science.247.4949.1446. [DOI] [PubMed] [Google Scholar]
  26. Maness L. M., Kastin A. J., Weber J. T., Banks W. A., Beckman B. S., Zadina J. E. The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci Biobehav Rev. 1994 Spring;18(1):143–159. doi: 10.1016/0149-7634(94)90043-4. [DOI] [PubMed] [Google Scholar]
  27. McMahon S. B., Armanini M. P., Ling L. H., Phillips H. S. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron. 1994 May;12(5):1161–1171. doi: 10.1016/0896-6273(94)90323-9. [DOI] [PubMed] [Google Scholar]
  28. McMahon S. B., Lewin G. R., Anand P., Ghatei M. A., Bloom S. R. Quantitative analysis of peptide levels and neurogenic extravasation following regeneration of afferents to appropriate and inappropriate targets. Neuroscience. 1989;33(1):67–73. doi: 10.1016/0306-4522(89)90311-4. [DOI] [PubMed] [Google Scholar]
  29. McMahon S. B., Sykova E., Wall P. D., Woolf C. J., Gibson S. J. Neurogenic extravasation and substance P levels are low in muscle as compared to skin the rat hindlimb. Neurosci Lett. 1984 Dec 21;52(3):235–240. doi: 10.1016/0304-3940(84)90167-8. [DOI] [PubMed] [Google Scholar]
  30. Michael G. J., Averill S., Nitkunan A., Rattray M., Bennett D. L., Yan Q., Priestley J. V. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci. 1997 Nov 1;17(21):8476–8490. doi: 10.1523/JNEUROSCI.17-21-08476.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mulderry P. K. Neuropeptide expression by newborn and adult rat sensory neurons in culture: effects of nerve growth factor and other neurotrophic factors. Neuroscience. 1994 Apr;59(3):673–688. doi: 10.1016/0306-4522(94)90186-4. [DOI] [PubMed] [Google Scholar]
  32. Nielsch U., Keen P. Reciprocal regulation of tachykinin- and vasoactive intestinal peptide-gene expression in rat sensory neurones following cut and crush injury. Brain Res. 1989 Feb 27;481(1):25–30. doi: 10.1016/0006-8993(89)90481-2. [DOI] [PubMed] [Google Scholar]
  33. Noguchi K., De León M., Nahin R. L., Senba E., Ruda M. A. Quantification of axotomy-induced alteration of neuropeptide mRNAs in dorsal root ganglion neurons with special reference to neuropeptide Y mRNA and the effects of neonatal capsaicin treatment. J Neurosci Res. 1993 May 1;35(1):54–66. doi: 10.1002/jnr.490350108. [DOI] [PubMed] [Google Scholar]
  34. O'Brien C., Woolf C. J., Fitzgerald M., Lindsay R. M., Molander C. Differences in the chemical expression of rat primary afferent neurons which innervate skin, muscle or joint. Neuroscience. 1989;32(2):493–502. doi: 10.1016/0306-4522(89)90096-1. [DOI] [PubMed] [Google Scholar]
  35. Ohara S., Roth K. A., Beaudet L. N., Schmidt R. E. Transganglionic neuropeptide Y response to sciatic nerve injury in young and aged rats. J Neuropathol Exp Neurol. 1994 Nov;53(6):646–662. doi: 10.1097/00005072-199411000-00012. [DOI] [PubMed] [Google Scholar]
  36. Ohara S., Tantuwaya V., DiStefano P. S., Schmidt R. E. Exogenous NT-3 mitigates the transganglionic neuropeptide Y response to sciatic nerve injury. Brain Res. 1995 Nov 13;699(1):143–148. doi: 10.1016/0006-8993(95)01021-m. [DOI] [PubMed] [Google Scholar]
  37. Persson J. K., Lindh B., Elde R., Robertson B., Rivero-Melián C., Eriksson N. P., Hökfelt T., Aldskogius H. The expression of different cytochemical markers in normal and axotomised dorsal root ganglion cells projecting to the nucleus gracilis in the adult rat. Exp Brain Res. 1995;105(3):331–344. doi: 10.1007/BF00233034. [DOI] [PubMed] [Google Scholar]
  38. Raivich G., Hellweg R., Kreutzberg G. W. NGF receptor-mediated reduction in axonal NGF uptake and retrograde transport following sciatic nerve injury and during regeneration. Neuron. 1991 Jul;7(1):151–164. doi: 10.1016/0896-6273(91)90083-c. [DOI] [PubMed] [Google Scholar]
  39. Shu S. Y., Ju G., Fan L. Z. The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett. 1988 Feb 29;85(2):169–171. doi: 10.1016/0304-3940(88)90346-1. [DOI] [PubMed] [Google Scholar]
  40. Sterne G. D., Brown R. A., Green C. J., Terenghi G. Neurotrophin-3 delivered locally via fibronectin mats enhances peripheral nerve regeneration. Eur J Neurosci. 1997 Jul;9(7):1388–1396. doi: 10.1111/j.1460-9568.1997.tb01493.x. [DOI] [PubMed] [Google Scholar]
  41. Terenghi G., Chen S., Carrington A. L., Polak J. M., Tomlinson D. R. Changes in sensory neuropeptides in dorsal root ganglion and spinal cord of spontaneously diabetic BB rats. A quantitative immunohistochemical study. Acta Diabetol. 1994 Dec;31(4):198–204. doi: 10.1007/BF00571951. [DOI] [PubMed] [Google Scholar]
  42. Tessarollo L., Vogel K. S., Palko M. E., Reid S. W., Parada L. F. Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11844–11848. doi: 10.1073/pnas.91.25.11844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tessler A., Himes B. T., Krieger N. R., Murray M., Goldberger M. E. Sciatic nerve transection produces death of dorsal root ganglion cells and reversible loss of substance P in spinal cord. Brain Res. 1985 Apr 22;332(2):209–218. doi: 10.1016/0006-8993(85)90590-6. [DOI] [PubMed] [Google Scholar]
  44. Tojo H., Kaisho Y., Nakata M., Matsuoka K., Kitagawa M., Abe T., Takami K., Yamamoto M., Shino A., Igarashi K. Targeted disruption of the neurotrophin-3 gene with lacZ induces loss of trkC-positive neurons in sensory ganglia but not in spinal cords. Brain Res. 1995 Jan 16;669(2):163–175. doi: 10.1016/0006-8993(94)01219-8. [DOI] [PubMed] [Google Scholar]
  45. Verge V. M., Gratto K. A., Karchewski L. A., Richardson P. M. Neurotrophins and nerve injury in the adult. Philos Trans R Soc Lond B Biol Sci. 1996 Mar 29;351(1338):423–430. doi: 10.1098/rstb.1996.0038. [DOI] [PubMed] [Google Scholar]
  46. Verge V. M., Richardson P. M., Benoit R., Riopelle R. J. Histochemical characterization of sensory neurons with high-affinity receptors for nerve growth factor. J Neurocytol. 1989 Oct;18(5):583–591. doi: 10.1007/BF01187079. [DOI] [PubMed] [Google Scholar]
  47. Verge V. M., Richardson P. M., Wiesenfeld-Hallin Z., Hökfelt T. Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci. 1995 Mar;15(3 Pt 1):2081–2096. doi: 10.1523/JNEUROSCI.15-03-02081.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wakisaka S., Kajander K. C., Bennett G. J. Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy. Neurosci Lett. 1991 Apr 1;124(2):200–203. doi: 10.1016/0304-3940(91)90093-9. [DOI] [PubMed] [Google Scholar]
  49. Wakisaka S., Takikita S., Sasaki Y., Kato J., Tabata M. J., Kurisu K. Cell size-specific appearance of neuropeptide Y in the trigeminal ganglion following peripheral axotomy of different branches of the mandibular nerve of the rat. Brain Res. 1993 Aug 27;620(2):347–350. doi: 10.1016/0006-8993(93)90179-q. [DOI] [PubMed] [Google Scholar]
  50. Walker M. W., Ewald D. A., Perney T. M., Miller R. J. Neuropeptide Y modulates neurotransmitter release and Ca2+ currents in rat sensory neurons. J Neurosci. 1988 Jul;8(7):2438–2446. doi: 10.1523/JNEUROSCI.08-07-02438.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wong J., Oblinger M. M. NGF rescues substance P expression but not neurofilament or tubulin gene expression in axotomized sensory neurons. J Neurosci. 1991 Feb;11(2):543–552. doi: 10.1523/JNEUROSCI.11-02-00543.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhang Q., Ji R. R., Lindsay R., Hökfelt T. Effect of growth factors on substance P mRNA expression in axotomized dorsal root ganglia. Neuroreport. 1995 Jun 19;6(9):1309–1312. doi: 10.1097/00001756-199506090-00020. [DOI] [PubMed] [Google Scholar]
  53. Zhang X., Meister B., Elde R., Verge V. M., Hökfelt T. Large calibre primary afferent neurons projecting to the gracile nucleus express neuropeptide Y after sciatic nerve lesions: an immunohistochemical and in situ hybridization study in rats. Eur J Neurosci. 1993 Nov 1;5(11):1510–1519. doi: 10.1111/j.1460-9568.1993.tb00219.x. [DOI] [PubMed] [Google Scholar]
  54. Zhang X., Wiesenfeld-Hallin Z., Hökfelt T. Effect of peripheral axotomy on expression of neuropeptide Y receptor mRNA in rat lumbar dorsal root ganglia. Eur J Neurosci. 1994 Jan 1;6(1):43–57. doi: 10.1111/j.1460-9568.1994.tb00246.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES