Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1998 Oct;193(Pt 3):443–447. doi: 10.1046/j.1469-7580.1998.19330443.x

The proliferative status of haematopoietic progenitor cells in the developing murine liver and adult bone marrow

A BLAIR 1,, D B THOMAS 1
PMCID: PMC1467864  PMID: 9877299

Abstract

A class of primitive progenitor cells with high proliferative potential in vitro (HPP-CFC), has been identified in fetal liver and adult bone marrow both in murine and human systems. The kinetic properties of HPP-CFC2 and the more mature granulocyte-macrophage colony forming units (CFU-GM) derived from murine fetal liver on d13, d15 and d19 of gestation, newborn liver and neonatal liver on d3 and d8 postpartum have been evaluated and compared with the kinetic properties of these progenitor cell populations derived from adult bone marrow. The frequency of HPP-CFC2 in fetal liver was found to be greatest on d15 of gestation then subsequently declined in newborn and neonatal liver. Similarly, the highest proportion of HPP-CFC2 engaged in DNA synthesis (53±3%) was detected in d15 fetal liver. This proportion decreased to 13±2% in the liver 1 wk after birth, which is comparable to the number of HPP-CFC2 derived from adult BM which were in S-phase (10±1%). Production of CFU-GM was found to be greater in adult bone marrow than in either fetal or newborn liver. While the proportion of CFU-GM in S-phase was high in all 3 tissue samples, the greatest proportion of cycling CFU-GM (50±2%) was detected in d15 fetal liver. These results suggest that HPP-CFC2 derived from fetal liver are actively cycling while HPP-CFC2 derived from adult bone marrow are relatively quiescent. In contrast, a high proportion of CFU-GM derived from fetal, newborn liver and adult bone marrow are engaged in DNA synthesis.

Keywords: HPP-CFC, CFU-GM, murine, fetal liver, bone marrow

Full Text

The Full Text of this article is available as a PDF (188.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertoncello I. Status of high proliferative potential colony-forming cells in the hematopoietic stem cell hierarchy. Curr Top Microbiol Immunol. 1992;177:83–94. doi: 10.1007/978-3-642-76912-2_7. [DOI] [PubMed] [Google Scholar]
  2. Bradley T. R., Hodgson G. S. Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood. 1979 Dec;54(6):1446–1450. [PubMed] [Google Scholar]
  3. Cen D., Levin J. Cell cycle status of murine megakaryocyte and granulocyte-macrophage colony-forming cells in bone marrow and spleen. Exp Hematol. 1992 Oct;20(9):1094–1100. [PubMed] [Google Scholar]
  4. Cork M. J., Wright E. G., Riches A. C. Regulation of murine granulocyte-macrophage progenitor cell and haemopoietic stem cell proliferation by factors produced in human fetal liver. Leuk Res. 1982;6(4):553–565. doi: 10.1016/0145-2126(82)90012-1. [DOI] [PubMed] [Google Scholar]
  5. Dawood K. A., Briscoe C. V., Thomas D. B., Riches A. C. Regulation of haematopoietic stem cell proliferation by stimulatory factors produced by murine fetal and adult liver. J Anat. 1990 Feb;168:209–216. [PMC free article] [PubMed] [Google Scholar]
  6. Falk L. A., Vogel S. N. Granulocyte-macrophage colony stimulating factor (GM-CSF) and macrophage colony stimulating factor (CSF-1) synergize to stimulate progenitor cells with high proliferative potential. J Leukoc Biol. 1988 Nov;44(5):455–464. doi: 10.1002/jlb.44.5.455. [DOI] [PubMed] [Google Scholar]
  7. Hodgson G. S., Bradley T. R. In vivo kinetic status of hematopoietic stem and progenitor cells as inferred from labeling with bromodeoxyuridine. Exp Hematol. 1984 Oct;12(9):683–687. [PubMed] [Google Scholar]
  8. Ihle J. N., Keller J., Henderson L., Klein F., Palaszynski E. Procedures for the purification of interleukin 3 to homogeneity. J Immunol. 1982 Dec;129(6):2431–2436. [PubMed] [Google Scholar]
  9. Johnson G. R., Moore M. A. Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature. 1975 Dec 25;258(5537):726–728. doi: 10.1038/258726a0. [DOI] [PubMed] [Google Scholar]
  10. Jordan C. T., Astle C. M., Zawadzki J., Mackarehtschian K., Lemischka I. R., Harrison D. E. Long-term repopulating abilities of enriched fetal liver stem cells measured by competitive repopulation. Exp Hematol. 1995 Aug;23(9):1011–1015. [PubMed] [Google Scholar]
  11. Kriegler A. B., Bradley T. R., Bertoncello I., Hamilton J. A., Hart P. H., Piccoli D. S., Hodgson G. S. Progenitor cells in murine bone marrow stimulated by growth factors produced by the AF1-19T rat cell line. Exp Hematol. 1990 Jun;18(5):372–378. [PubMed] [Google Scholar]
  12. Kriegler A. B., Verschoor S. M., Bernardo D., Bertoncello I. The relationship between different high proliferative potential colony-forming cells in mouse bone marrow. Exp Hematol. 1994 May;22(5):432–440. [PubMed] [Google Scholar]
  13. McNiece I. K., Bertoncello I., Kriegler A. B., Quesenberry P. J. Colony-forming cells with high proliferative potential (HPP-CFC). Int J Cell Cloning. 1990 May;8(3):146–160. doi: 10.1002/stem.5530080302. [DOI] [PubMed] [Google Scholar]
  14. McNiece I. K., Bradley T. R., Kriegler A. B., Hodgson G. S. Subpopulations of mouse bone marrow high-proliferative-potential colony-forming cells. Exp Hematol. 1986 Oct;14(9):856–860. [PubMed] [Google Scholar]
  15. McNiece I. K., Robinson B. E., Quesenberry P. J. Stimulation of murine colony-forming cells with high proliferative potential by the combination of GM-CSF and CSF-1. Blood. 1988 Jul;72(1):191–195. [PubMed] [Google Scholar]
  16. Micklem H. S., Ford C. E., Evans E. P., Ogden D. A., Papworth D. S. Competitive in vivo proliferation of foetal and adult haematopoietic cells in lethally irradiated mice. J Cell Physiol. 1972 Apr;79(2):293–298. doi: 10.1002/jcp.1040790214. [DOI] [PubMed] [Google Scholar]
  17. Muench M. O., Cupp J., Polakoff J., Roncarolo M. G. Expression of CD33, CD38, and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential. Blood. 1994 Jun 1;83(11):3170–3181. [PubMed] [Google Scholar]
  18. Pragnell I. B., Wright E. G., Lorimore S. A., Adam J., Rosendaal M., DeLamarter J. F., Freshney M., Eckmann L., Sproul A., Wilkie N. The effect of stem cell proliferation regulators demonstrated with an in vitro assay. Blood. 1988 Jul;72(1):196–201. [PubMed] [Google Scholar]
  19. Quesenberry P., Song Z. X., McGrath E., McNiece I., Shadduck R., Waheed A., Baber G., Kleeman E., Kaiser D. Multilineage synergistic activity produced by a murine adherent marrow cell line. Blood. 1987 Mar;69(3):827–835. [PubMed] [Google Scholar]
  20. Stanley E. R., Heard P. M. Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells. J Biol Chem. 1977 Jun 25;252(12):4305–4312. [PubMed] [Google Scholar]
  21. TONNA E. A. Enzyme changes in the ageing periosteum. Nature. 1958 Feb 15;181(4607):486–486. doi: 10.1038/181486a0. [DOI] [PubMed] [Google Scholar]
  22. Thomas D. B., Cork M. J., Riches A. C. The regulation of the haematopoietic stem cell compartment in foetal liver. Prog Clin Biol Res. 1981;59B:277–285. [PubMed] [Google Scholar]
  23. UPHOFF D. E. Perclusion of secondary phase of irradiation syndrome by inoculation of fetal hematopoietic tissue following lethal total-body x-irradiation. J Natl Cancer Inst. 1958 Mar;20(3):625–632. [PubMed] [Google Scholar]
  24. Wolf N. S., Bertoncello I., Jiang D., Priestley G. Developmental hematopoiesis from prenatal to young-adult life in the mouse model. Exp Hematol. 1995 Feb;23(2):142–146. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES