Abstract
In the golden hamster (Mesocricetus auratus), pubertal establishment of spermatogenesis includes a defined period (d 26–30 of life) during which elongation of spermatids is selectively arrested. The resulting appearance of germ cell associations not conforming to stage and the phenomenon of desynchronisation-related germ cell degeneration are analysed both quantitatively and qualitatively by means of light and ‘retrospective’ electron microscopy. From d 26 onwards, the portion of tubules containing non-stage conforming germ cell associations gradually increases up to 37.5% of sectioned tubules on d 32. Concomitantly, the degree of desynchronisation rises to a maturational gap between spermatids and associated younger germ cells of 7 stages of the seminiferous epithelium cycle, i.e. of fully half a cycle. Beyond d 32, the frequency of desynchronised tubule segments decreases again. Some of the arrested round spermatids and, eventually, all belatedly elongating spermatids degenerate and are lost from the epithelium. Thus a regular maturation of advanced spermatids does not succeed under non-stage conforming conditions. Possibly it is not the desynchronisation between the associated germ cell generations and the spermatids by itself that impedes normal further development of the latter cells. Instead this may be due to the maturational delay of the stage-aberrant cells by several stages compared to the seminiferous epithelium as a whole and, especially, in relation to the stage-conditioned functional state of the neighbouring Sertoli cells.
Keywords: Seminiferous epithelium, spermatogenesis, germ cell degeneration, spermatids
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartlett J. M., Kerr J. B., Sharpe R. M. The selective removal of pachytene spermatocytes using methoxy acetic acid as an approach to the study in vivo of paracrine interactions in the testis. J Androl. 1988 Jan-Feb;9(1):31–40. doi: 10.1002/j.1939-4640.1988.tb01006.x. [DOI] [PubMed] [Google Scholar]
- Bartlett J. M., Weinbauer G. F., Nieschlag E. Differential effects of FSH and testosterone on the maintenance of spermatogenesis in the adult hypophysectomized rat. J Endocrinol. 1989 Apr;121(1):49–58. doi: 10.1677/joe.0.1210049. [DOI] [PubMed] [Google Scholar]
- CHOWDHURY A. K., STEINBERGER E. A QUANTITATIVE STUDY OF THE EFFECT OF HEAT ON GERMINAL EPITHELIUM OF RAT TESTES. Am J Anat. 1964 Nov;115:509–524. doi: 10.1002/aja.1001150307. [DOI] [PubMed] [Google Scholar]
- CLERMONT Y. Cycle de l'épithélium séminal et mode de renouvellement des spermatogonies chez le hamster. Rev Can Biol. 1954 Sep;13(3):208–245. [PubMed] [Google Scholar]
- CLERMONT Y., PEREY B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am J Anat. 1957 Mar;100(2):241–267. doi: 10.1002/aja.1001000205. [DOI] [PubMed] [Google Scholar]
- CLERMONT Y., PEREY B. The stages of the cycle of the seminiferous epithelium of the rat: practical definitions in PA-Schiff-hematoxylin and hematoxylin-eosin stained sections. Rev Can Biol. 1957 Dec;16(4):451–462. [PubMed] [Google Scholar]
- Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972 Jan;52(1):198–236. doi: 10.1152/physrev.1972.52.1.198. [DOI] [PubMed] [Google Scholar]
- Dym M., Clermont Y. Role of spermatogonia in the repair of the seminiferous epithelium following x-irradiation of the rat testis. Am J Anat. 1970 Jul;128(3):265–282. doi: 10.1002/aja.1001280302. [DOI] [PubMed] [Google Scholar]
- Holstein A. F., Schirren C., Schirren C. G. Human spermatids and spermatozoa lacking acrosomes. J Reprod Fertil. 1973 Dec;35(3):489–491. doi: 10.1530/jrf.0.0350489. [DOI] [PubMed] [Google Scholar]
- LEBLOND C. P., CLERMONT Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952 Nov 20;55(4):548–573. doi: 10.1111/j.1749-6632.1952.tb26576.x. [DOI] [PubMed] [Google Scholar]
- Lee I. P., Dixon R. L. Effects of procarbazine on spermatogenesis determined by velocity sedimentation cell separation technique and serial mating. J Pharmacol Exp Ther. 1972 May;181(2):219–226. [PubMed] [Google Scholar]
- Linder C. C., Heckert L. L., Roberts K. P., Kim K. H., Griswold M. D. Expression of receptors during the cycle of the seminiferous epithelium. Ann N Y Acad Sci. 1991;637:313–321. doi: 10.1111/j.1749-6632.1991.tb27318.x. [DOI] [PubMed] [Google Scholar]
- Miething A. Delayed onset of spermatid elongation in the pubertal golden hamster testis depends on a developmental deficiency of Leydig cell-11 beta-HSD. Adv Exp Med Biol. 1997;424:159–160. doi: 10.1007/978-1-4615-5913-9_30. [DOI] [PubMed] [Google Scholar]
- Neumann A., Haider S. G., Hilscher B. Temporal coincidence of the appearance of elongated spermatids and of histochemical reaction of 11 beta-hydroxysteroid dehydrogenase in rat Leydig cells. Andrologia. 1993 Sep-Oct;25(5):263–269. doi: 10.1111/j.1439-0272.1993.tb02723.x. [DOI] [PubMed] [Google Scholar]
- O'Donnell L., McLachlan R. I., Wreford N. G., Robertson D. M. Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle. Endocrinology. 1994 Dec;135(6):2608–2614. doi: 10.1210/endo.135.6.7988449. [DOI] [PubMed] [Google Scholar]
- Pelletier R. M. Cyclic formation and decay of the blood-testis barrier in the mink (Mustela vison), a seasonal breeder. Am J Anat. 1986 Jan;175(1):91–117. doi: 10.1002/aja.1001750109. [DOI] [PubMed] [Google Scholar]
- Ritzen E. M., Boitani C., Parvinen M., French F. C., Feldman M. Stage-dependent secretion of ABP by rat seminiferous tubules. Mol Cell Endocrinol. 1982 Jan;25(1):25–33. doi: 10.1016/0303-7207(82)90166-6. [DOI] [PubMed] [Google Scholar]
- Russell L. D., Alger L. E., Nequin L. G. Hormonal control of pubertal spermatogenesis. Endocrinology. 1987 Apr;120(4):1615–1632. doi: 10.1210/endo-120-4-1615. [DOI] [PubMed] [Google Scholar]
- Russell L. D., Clermont Y. Degeneration of germ cells in normal, hypophysectomized and hormone treated hypophysectomized rats. Anat Rec. 1977 Mar;187(3):347–366. doi: 10.1002/ar.1091870307. [DOI] [PubMed] [Google Scholar]
- Russell L. D., Lee I. P., Ettlin R., Malone J. P. Morphological pattern of response after administration of procarbazine: alteration of specific cell associations during the cycle of the seminiferous epithelium of the rat. Tissue Cell. 1983;15(3):391–404. doi: 10.1016/0040-8166(83)90071-x. [DOI] [PubMed] [Google Scholar]
- Schabtach E., Parkening T. A. A method for sequential high resolution light and electron microscopy of selected areas of the same material. J Cell Biol. 1974 Apr;61(1):261–264. doi: 10.1083/jcb.61.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharpe R. M., Maddocks S., Millar M., Kerr J. B., Saunders P. T., McKinnell C. Testosterone and spermatogenesis. Identification of stage-specific, androgen-regulated proteins secreted by adult rat seminiferous tubules. J Androl. 1992 Mar-Apr;13(2):172–184. [PubMed] [Google Scholar]
- Skinner M. K. Cell-cell interactions in the testis. Endocr Rev. 1991 Feb;12(1):45–77. doi: 10.1210/edrv-12-1-45. [DOI] [PubMed] [Google Scholar]
- Sun Y. T., Wreford N. G., Robertson D. M., de Kretser D. M. Quantitative cytological studies of spermatogenesis in intact and hypophysectomized rats: identification of androgen-dependent stages. Endocrinology. 1990 Sep;127(3):1215–1223. doi: 10.1210/endo-127-3-1215. [DOI] [PubMed] [Google Scholar]
- Vomachka A. J., Greenwald G. S. The development of gonadotropin and steroid hormone patterns in male and female hamsters from birth to puberty. Endocrinology. 1979 Oct;105(4):960–966. doi: 10.1210/endo-105-4-960. [DOI] [PubMed] [Google Scholar]