Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1999 Jan;194(Pt 1):39–50. doi: 10.1046/j.1469-7580.1999.19410039.x

Histological and cytological studies on the developing thymus of sharpsnout seabream, Diplodus puntazzo

NICLA ROMANO 1 ,, MONICA FANELLI 1 , GIOVANNI MARIA DEL PAPA 1 , GIUSEPPE SCAPIGLIATI 1 , LUCIA MASTROLIA 1
PMCID: PMC1467892  PMID: 10227665

Abstract

The structure of the developing thymus of the marine teleost, Diplodus puntazzo, was studied by light and transmission electron microscopy. The first anlage of the thymus developed by d 20 postfertilisation (p.f.) as a group of undifferentiated cells dorsal to the epithelium of the branchial chamber. The organ increased significantly in size around d 51–66 p.f. and differentiation of cortex and medulla occurred concomitantly. On the basis of their localisation, 4 main types of epithelial cell were distinguished: (1) limiting, adjacent to the connective capsule; (2) medullary and cortical reticular cells; (3) nurse cells, located in the corticomedullary boundary; (4) Hassall-like corpuscles. The majority of medium to large blast-like lymphoid cells were localised in the medulla, while small lymphocytes were housed in the cortical region. These morphological features were maintained at later stages. However, in juveniles in the medulla we observed reticular epithelial cells with cysts and rare Hassall-like corpuscles. The study was designed to obtain more information concerning the histology of the developing thymus of sharpsnout seabream and give a concise description of the differentiation of epithelial cells and lymphoid cells in the thymic parenchyma.

Keywords: Teleost fishes, thymic development

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castillo A., López-Fierro P., Zapata A., Villena A., Razquin B. Post-hatching development of the thymic epithelial cells in the rainbow trout Salmo gairdneri: an ultrastructural study. Am J Anat. 1991 Mar;190(3):299–307. doi: 10.1002/aja.1001900310. [DOI] [PubMed] [Google Scholar]
  2. Flaño E., Alvarez F., López-Fierro P., Razquin B. E., Villena A. J., Zapata A. G. In vitro and in situ characterization of fish thymic nurse cells. Dev Immunol. 1996;5(1):17–24. doi: 10.1155/1996/14738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Froehly M. F., Deschaux P. A. Presence of tonofilaments and thymic serum factor (FTS) in thymic epithelial cells of a fresh water fish (carp: Cyprinus carpio) and a sea water fish (bass: Dicentrarchus labrax). Thymus. 1986;8(4):235–244. [PubMed] [Google Scholar]
  4. Grace M. F., Manning M. J. Histogenesis of the lymphoid organs in rainbow trout, Salmo gairdneri Rich. 1836. Dev Comp Immunol. 1980 Spring;4(2):255–264. doi: 10.1016/s0145-305x(80)80029-2. [DOI] [PubMed] [Google Scholar]
  5. Kendall M. D. Functional anatomy of the thymic microenvironment. J Anat. 1991 Aug;177:1–29. [PMC free article] [PubMed] [Google Scholar]
  6. Lobb C. J. Secretory immunity induced in catfish, Ictalurus punctatus, following bath immunization. Dev Comp Immunol. 1987 Fall;11(4):727–738. doi: 10.1016/0145-305x(87)90060-7. [DOI] [PubMed] [Google Scholar]
  7. Miller N. W., Sizemore R. C., Clem L. W. Phylogeny of lymphocyte heterogeneity: the cellular requirements for in vitro antibody responses of channel catfish leukocytes. J Immunol. 1985 May;134(5):2884–2888. [PubMed] [Google Scholar]
  8. Nakanishi T. Effects of X-irradiation and thymectomy on the immune response of the marine teleost, Sebastiscus marmoratus. Dev Comp Immunol. 1986 Fall;10(4):519–527. doi: 10.1016/0145-305x(86)90173-4. [DOI] [PubMed] [Google Scholar]
  9. O'Neill J. G. Ontogeny of the lymphoid organs in an Antarctic teleost, Harpagifer antarcticus (Notothenioidei: Perciformes). Dev Comp Immunol. 1989 Winter;13(1):25–33. doi: 10.1016/0145-305x(89)90013-x. [DOI] [PubMed] [Google Scholar]
  10. Ritter M. A., Sauvage C. A., Cotmore S. F. The human thymus microenvironment: in vivo identification of thymic nurse cells and other antigenically-distinct subpopulations of epithelial cells. Immunology. 1981 Nov;44(3):439–446. [PMC free article] [PubMed] [Google Scholar]
  11. Romano N., Abelli L., Mastrolia L., Scapigliati G. Immunocytochemical detection and cytomorphology of lymphocyte subpopulations in a teleost fish Dicentrarchus labrax. Cell Tissue Res. 1997 Jul;289(1):163–171. doi: 10.1007/s004410050862. [DOI] [PubMed] [Google Scholar]
  12. Romano N., Casini P., Abelli L., Mastrolia L., Aita M. Influence of partial decerebration and hypophyseal allograft on differentiation of thymic epithelial cells in chick embryos: an ultrastructural study. Anat Embryol (Berl) 1996 Jun;193(6):593–600. doi: 10.1007/BF00187931. [DOI] [PubMed] [Google Scholar]
  13. Sizemore R. C., Miller N. W., Cuchens M. A., Lobb C. J., Clem L. W. Phylogeny of lymphocyte heterogeneity: the cellular requirements for in vitro mitogenic responses of channel catfish leukocytes. J Immunol. 1984 Dec;133(6):2920–2924. [PubMed] [Google Scholar]
  14. WOOD J. G. Identification of and observations on epinephrine and norepinephrine containing cells in the adrenal medulla. Am J Anat. 1963 May;112:285–303. doi: 10.1002/aja.1001120302. [DOI] [PubMed] [Google Scholar]
  15. Zapata A. Lymphoid organs of teleost fist. II. Ultrastructure of renal lymphoid tissue of Rutilus rutilus and Gobio gobio. Dev Comp Immunol. 1981 Fall;5(4):685–690. doi: 10.1016/s0145-305x(81)80043-2. [DOI] [PubMed] [Google Scholar]
  16. van de Wijngaert F. P., Kendall M. D., Schuurman H. J., Rademakers L. H., Kater L. Heterogeneity of epithelial cells in the human thymus. An ultrastructural study. Cell Tissue Res. 1984;237(2):227–237. doi: 10.1007/BF00217140. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES