Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 1;25(13):2648–2656. doi: 10.1093/nar/25.13.2648

Formation of a G-tetrad and higher order structures correlates with biological activity of the RelA (NF-kappaB p65) 'antisense' oligodeoxynucleotide.

L Benimetskaya 1, M Berton 1, A Kolbanovsky 1, S Benimetsky 1, C A Stein 1
PMCID: PMC146791  PMID: 9185577

Abstract

We have examined the behavior of the phosphorothioate antisense Rel A (NF-kappaB p65) oligodeoxynucleotide (oligo) and related molecules. Because of the presence of a G-tetrad near its 5'terminus, this molecule is capable of forming tetraplexes and other higher order structures in a temperature and time dependent manner. The G-tetrad in the phosphodiester congener is protected from methylation by dimethylsulfate when the oligomer is 3'-phosphorylated. However, this protection is completely lost when it is 5'phosphorylated, indicating that the formation of at least some higher order structures has been blocked. In addition, we also prevented tetraplex formation by substitution of 7-deazaguanosine (7-DG) for guanosine at several positions within and outside of the tetrad. This substitution retains Watson-Crick base pair hybridization but prevents Hoogsteen base-pair interactions. When murine K-Balb cells were treated with 20microM antisense RelA oligo, complete blockade of nuclear translocation of RelA was observed. However, this effect was virtually entirely abrogated in most cases by 7-DG substitution within the tetrad, but retained when the substitution was made 3' to the tetrad. The AS RelA-induced downregulation of Sp-1 activity behaved similarly after 7-DG substitution. Thus, the parent phosphorothioate AS RelA molecule cannot be a Watson-Crick antisense agent. However, these conclusions cannot be extrapolated to other G-tetrad containing oligomers and each must be evaluated individually.

Full Text

The Full Text of this article is available as a PDF (194.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop J. S., Guy-Caffey J. K., Ojwang J. O., Smith S. R., Hogan M. E., Cossum P. A., Rando R. F., Chaudhary N. Intramolecular G-quartet motifs confer nuclease resistance to a potent anti-HIV oligonucleotide. J Biol Chem. 1996 Mar 8;271(10):5698–5703. doi: 10.1074/jbc.271.10.5698. [DOI] [PubMed] [Google Scholar]
  2. Burgess T. L., Fisher E. F., Ross S. L., Bready J. V., Qian Y. X., Bayewitch L. A., Cohen A. M., Herrera C. J., Hu S. S., Kramer T. B. The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4051–4055. doi: 10.1073/pnas.92.9.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  4. Guvakova M. A., Yakubov L. A., Vlodavsky I., Tonkinson J. L., Stein C. A. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem. 1995 Feb 10;270(6):2620–2627. doi: 10.1074/jbc.270.6.2620. [DOI] [PubMed] [Google Scholar]
  5. Higgins K. A., Perez J. R., Coleman T. A., Dorshkind K., McComas W. A., Sarmiento U. M., Rosen C. A., Narayanan R. Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9901–9905. doi: 10.1073/pnas.90.21.9901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jin R., Gaffney B. L., Wang C., Jones R. A., Breslauer K. J. Thermodynamics and structure of a DNA tetraplex: a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T). Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8832–8836. doi: 10.1073/pnas.89.18.8832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Khaled Z., Benimetskaya L., Zeltser R., Khan T., Sharma H. W., Narayanan R., Stein C. A. Multiple mechanisms may contribute to the cellular anti-adhesive effects of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 1996 Feb 15;24(4):737–745. doi: 10.1093/nar/24.4.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knorre D. G., Vlassov V. V., Zarytova V. F., Karpova G. G. Nucleotide and oligonucleotide derivatives as enzyme and nucleic acid targeted irreversible inhibitors. Chemical aspects. Adv Enzyme Regul. 1985;24:277–299. doi: 10.1016/0065-2571(85)90082-2. [DOI] [PubMed] [Google Scholar]
  9. Maltese J. Y., Sharma H. W., Vassilev L., Narayanan R. Sequence context of antisense RelA/NF-kappa B phosphorothioates determines specificity. Nucleic Acids Res. 1995 Apr 11;23(7):1146–1151. doi: 10.1093/nar/23.7.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Murchie A. I., Lilley D. M. Tetraplex folding of telomere sequences and the inclusion of adenine bases. EMBO J. 1994 Feb 15;13(4):993–1001. doi: 10.1002/j.1460-2075.1994.tb06344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Narayanan R., Higgins K. A., Perez J. R., Coleman T. A., Rosen C. A. Evidence for differential functions of the p50 and p65 subunits of NF-kappa B with a cell adhesion model. Mol Cell Biol. 1993 Jun;13(6):3802–3810. doi: 10.1128/mcb.13.6.3802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Perez J. R., Li Y., Stein C. A., Majumder S., van Oorschot A., Narayanan R. Sequence-independent induction of Sp1 transcription factor activity by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5957–5961. doi: 10.1073/pnas.91.13.5957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ratajczak M. Z., Kant J. A., Luger S. M., Hijiya N., Zhang J., Zon G., Gewirtz A. M. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11823–11827. doi: 10.1073/pnas.89.24.11823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sen D., Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature. 1990 Mar 29;344(6265):410–414. doi: 10.1038/344410a0. [DOI] [PubMed] [Google Scholar]
  15. Sen D., Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988 Jul 28;334(6180):364–366. doi: 10.1038/334364a0. [DOI] [PubMed] [Google Scholar]
  16. Sen D., Gilbert W. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry. 1992 Jan 14;31(1):65–70. doi: 10.1021/bi00116a011. [DOI] [PubMed] [Google Scholar]
  17. Sharma H. W., Perez J. R., Higgins-Sochaski K., Hsiao R., Narayanan R. Transcription factor decoy approach to decipher the role of NF-kappa B in oncogenesis. Anticancer Res. 1996 Jan-Feb;16(1):61–69. [PubMed] [Google Scholar]
  18. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  19. Sundquist W. I., Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989 Dec 14;342(6251):825–829. doi: 10.1038/342825a0. [DOI] [PubMed] [Google Scholar]
  20. Tonkinson J. L., Stein C. A. Patterns of intracellular compartmentalization, trafficking and acidification of 5'-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucleic Acids Res. 1994 Oct 11;22(20):4268–4275. doi: 10.1093/nar/22.20.4268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williamson J. R., Raghuraman M. K., Cech T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell. 1989 Dec 1;59(5):871–880. doi: 10.1016/0092-8674(89)90610-7. [DOI] [PubMed] [Google Scholar]
  22. Wyatt J. R., Davis P. W., Freier S. M. Kinetics of G-quartet-mediated tetramer formation. Biochemistry. 1996 Jun 18;35(24):8002–8008. doi: 10.1021/bi960124h. [DOI] [PubMed] [Google Scholar]
  23. Wyatt J. R., Vickers T. A., Roberson J. L., Buckheit R. W., Jr, Klimkait T., DeBaets E., Davis P. W., Rayner B., Imbach J. L., Ecker D. J. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1356–1360. doi: 10.1073/pnas.91.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yakubov L., Khaled Z., Zhang L. M., Truneh A., Vlassov V., Stein C. A. Oligodeoxynucleotides interact with recombinant CD4 at multiple sites. J Biol Chem. 1993 Sep 5;268(25):18818–18823. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES