Abstract
It is widely accepted that Meckel's cartilage in mammals is uncalcified hyaline cartilage that is resorbed and is not involved in bone formation of the mandible. We examined the spatial and temporal characteristics of matrix calcification in Meckel's cartilage, using histochemical and immunocytochemical methods, electron microscopy and an electron probe microanalyser. The intramandibular portion of Meckel's cartilage could be divided schematically into anterior and posterior portions with respect to the site of initiation of ossification beneath the mental foramen. Calcification of the matrix occurred in areas in which alkaline phosphatase activity could be detected by light and electron microscopy and by immunohistochemical staining. The expression of type X collagen was restricted to the hypertrophic cells of intramandibular Meckel's cartilage, and staining with alizarin red and von Kossa stain revealed that calcification progressed in both posterior and anterior directions from the primary centre of ossification. After the active cellular resorption of calcified cartilage matrix, new osseous islands were formed by trabecular bone that intruded from the perichondrial bone collar. Evidence of such formation of bone was supported by results of double immunofluorescence staining specific for type I and type II collagens, in addition to results of immunostaining for osteopontin. Calcification of the posterior portion resembled that in the anterior portion of intramandibular Meckel's cartilage, and our findings indicate that the posterior portion also contributes to the bone formation of the mandible by an endochondral-type mechanism of calcification.
Keywords: Calcification, endochondral ossification, mandible, Meckel's cartilage
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akisaka T., Suemune S., Nishimori T., Shiba T., Hosoi M., Imanishi I. Distribution pattern of alkaline phosphatase activity in Meckel's cartilage of the mouse embryos. Hiroshima Daigaku Shigaku Zasshi. 1980;12(1):182–189. [PubMed] [Google Scholar]
- BHASKAR S. N., WEINMANN J. P., SCHOUR I. Role of Meckel's cartilage in the development and growth of the rat mandible. J Dent Res. 1953 Jun;32(3):398–410. doi: 10.1177/00220345530320031401. [DOI] [PubMed] [Google Scholar]
- Bernick S., Patek P. Q. Postnatal development of the rat mandible. J Dent Res. 1969 Nov-Dec;48(6):1258–1263. doi: 10.1177/00220345690480062901. [DOI] [PubMed] [Google Scholar]
- Chung K. S., Park H. H., Ting K., Takita H., Apte S. S., Kuboki Y., Nishimura I. Modulated expression of type X collagen in Meckel's cartilage with different developmental fates. Dev Biol. 1995 Aug;170(2):387–396. doi: 10.1006/dbio.1995.1224. [DOI] [PubMed] [Google Scholar]
- Farnum C. E., Wilsman N. J. Pericellular matrix of growth plate chondrocytes: a study using postfixation with osmium-ferrocyanide. J Histochem Cytochem. 1983 Jun;31(6):765–775. doi: 10.1177/31.6.6841972. [DOI] [PubMed] [Google Scholar]
- Frommer J., Margolies M. R. Contribution of Meckel's cartilage to ossification of the mandible in mice. J Dent Res. 1971 Sep-Oct;50(5):1260–1267. doi: 10.1177/00220345710500052801. [DOI] [PubMed] [Google Scholar]
- Granström G., Zellin G., Magnusson B. C., Mångs H. Enzyme histochemical analysis of Meckel's cartilage. J Anat. 1988 Oct;160:101–108. [PMC free article] [PubMed] [Google Scholar]
- Hall B. K. How is mandibular growth controlled during development and evolution? J Craniofac Genet Dev Biol. 1982;2(1):45–49. [PubMed] [Google Scholar]
- Harada Y., Ishizeki K. Evidence for transformation of chondrocytes and site-specific resorption during the degradation of Meckel's cartilage. Anat Embryol (Berl) 1998 Jun;197(6):439–450. doi: 10.1007/s004290050155. [DOI] [PubMed] [Google Scholar]
- Ishizeki K., Hiraki Y., Kubo M., Nawa T. Sequential synthesis of cartilage and bone marker proteins during transdifferentiation of mouse Meckel's cartilage chondrocytes in vitro. Int J Dev Biol. 1997 Feb;41(1):83–89. [PubMed] [Google Scholar]
- Ishizeki K., Kubo M., Yamamoto H., Nawa T. Immunocytochemical expression of type I and type II collagens by rat Meckel's chondrocytes in culture during phenotypic transformation. Arch Oral Biol. 1998 Feb;43(2):117–126. doi: 10.1016/s0003-9969(97)00104-0. [DOI] [PubMed] [Google Scholar]
- Ishizeki K., Nagano H., Fujiwara N., Nawa T. Morphological changes during survival, cellular transformation, and calcification of the embryonic mouse: Meckel's cartilage transplanted into heterotopic sites. J Craniofac Genet Dev Biol. 1994 Jan-Mar;14(1):33–42. [PubMed] [Google Scholar]
- Ishizeki K., Takigawa M., Harada Y., Suzuki F., Nawa T. Meckel's cartilage chondrocytes in organ culture synthesize bone-type proteins accompanying osteocytic phenotype expression. Anat Embryol (Berl) 1996 Jan;193(1):61–71. doi: 10.1007/BF00186834. [DOI] [PubMed] [Google Scholar]
- Ishizeki K., Takigawa M., Nawa T., Suzuki F. Mouse Meckel's cartilage chondrocytes evoke bone-like matrix and further transform into osteocyte-like cells in culture. Anat Rec. 1996 May;245(1):25–35. doi: 10.1002/(SICI)1097-0185(199605)245:1<25::AID-AR5>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- Kavumpurath S., Hall B. K. In vitro reformation of the perichondrium from perichondrial-free Meckel's cartilages of the embryonic chick. J Craniofac Genet Dev Biol. 1989;9(2):173–184. [PubMed] [Google Scholar]
- Kavumpurath S., Hall B. K. Lack of either chondrocyte hypertrophy or osteogenesis in Meckel's cartilage of the embryonic chick exposed to epithelia and to thyroxine in vitro. J Craniofac Genet Dev Biol. 1990;10(3):263–275. [PubMed] [Google Scholar]
- Kjaer I. Histochemical investigations on the symphysis menti in the human fetus related to fetal skeletal maturation in the hand and foot. Acta Anat (Basel) 1975;93(4):606–633. [PubMed] [Google Scholar]
- Mayahara H., Hirano H., Saito T., Ogawa K. The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie. 1967;11(1):88–96. doi: 10.1007/BF00326615. [DOI] [PubMed] [Google Scholar]
- Melcher A. H. Role of chondrocytes and hydrocortisone in resorption of proximal fragment of Meckel's cartilage: an in vitro and in vivo study. Anat Rec. 1972 Jan;172(1):21–36. doi: 10.1002/ar.1091720103. [DOI] [PubMed] [Google Scholar]
- Miyake T., Cameron A. M., Hall B. K. Stage-specific expression patterns of alkaline phosphatase during development of the first arch skeleton in inbred C57BL/6 mouse embryos. J Anat. 1997 Feb;190(Pt 2):239–260. doi: 10.1046/j.1469-7580.1997.19020239.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHANY S. F., BAST T. H., ANSON B. J. The development of the first branchial arch in man and the fate of Meckel's cartilage. Q Bull Northwest Univ Med Sch. 1956;30(4):331–355. [PMC free article] [PubMed] [Google Scholar]
- Richman J. M., Diewert V. M. The fate of Meckel's cartilage chondrocytes in ocular culture. Dev Biol. 1988 Sep;129(1):48–60. doi: 10.1016/0012-1606(88)90160-1. [DOI] [PubMed] [Google Scholar]
- Savostin-Asling I., Asling C. W. Resorption of calcified cartilage as seen in Meckel's cartilage of rats. Anat Rec. 1973 Jul;176(3):345–359. doi: 10.1002/ar.1091760310. [DOI] [PubMed] [Google Scholar]
- Trichilis A., Wroblewski J. Expression of p53 and hsp70 in relation to apoptosis during Meckel's cartilage development in the mouse. Anat Embryol (Berl) 1997 Aug;196(2):107–113. doi: 10.1007/s004290050083. [DOI] [PubMed] [Google Scholar]
- Yuodelis R. A. The morphogenesis of the human temporomandibular joint and its associated structures. J Dent Res. 1966 Jan-Feb;45(1):182–191. doi: 10.1177/00220345660450011301. [DOI] [PubMed] [Google Scholar]