Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1999 Apr;194(Pt 3):323–334. doi: 10.1046/j.1469-7580.1999.19430323.x

Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload

GEOFFREY GOLDSPINK 1,
PMCID: PMC1467932  PMID: 10386770

Abstract

The study of the underlying mechanisms by which cells respond to mechanical stimuli, i.e. the link between the mechanical stimulus and gene expression, represents a new and important area in the morphological sciences. Several cell types (‘mechanocytes’), e.g. osteoblasts and fibroblasts as well as smooth, cardiac and skeletal muscle cells are activated by mechanical strain and there is now mounting evidence that this involves the cytoskeleton. Muscle offers one of the best opportunities for studying this type of mechanotransduction as the mechanical activity generated by and imposed upon muscle tissue can be accurately controlled and measured in both in vitro and in vivo systems. Muscle is highly responsive to changes in functional demands. Overload leads to hypertrophy, whilst decreased load force generation and immobilisation with the muscle in the shortened position leads to atrophy. For instance it has been shown that stretch is an important mechanical signal for the production of more actin and myosin filaments and the addition of new sarcomeres in series and in parallel. This is preceded by upregulation of transcription of the appropriate genes some of which such as the myosin isoforms markedly change the muscle phenotype. Indeed, the switch in the expression induced by mechanical activity of myosin heavy chain genes which encode different molecular motors is a means via which the tissue adapts to a given type of physical activity. As far as increase in mass is concerned, our group have cloned the cDNA of a splice variant of IGF that is produced by active muscle that appears to be the factor that controls local tissue repair, maintenance and remodelling. From its sequence it can be seen that it is derived from the IGF gene by alternative splicing but it has different exons to the liver isoforms. It has a 52 base insert in the E domain which alters the reading frame of the 3′ end. Therefore, this splice variant of IGF-1 is likely to bind to a different binding protein which exists in the interstitial tissue spaces of muscle, neuronal tissue and bone. This would be expected to localise its action as it would be unstable in the unbound form which is important as its production would not disturb the glucose homeostasis unduly. This new growth factor has been called mechano growth factor (MGF) to distinguish it from the liver IGFs which have a systemic mode of action. Although the liver is usually thought of as the source of circulating IGF, it has recently been shown that during exercise skeletal muscle not only produces much of the circulating IGF but active musculature also utilises most of the IGF produced. We have cloned both an autocrine and endocrine IGF-1, both of which are upregulated in cardiac as well as skeletal muscle when subjected to overload. It has been shown that, in contrast to normal muscle, MGF is not detectable in dystrophic mdx muscles even when subjected to stretch and stretch combined with electrical stimulation. This is true for muscular dystrophies that are due to the lack of dystrophin (X-linked) and due to a laminin deficiency (autosomal), thus indicating that the dystrophin cytoskeletal complex may be involved in the mechanotransduction mechanism. When this complex is defective the necessary systemic as well as autocrine IGF-1 growth factors required for local repair are not produced and the ensuing cell death results in progressive loss of muscle mass. The discovery of the locally produced IGF-1 appears to provide the link between the mechanical stimulus and the activation of gene expression.

Keywords: Mechanotransduction, myosin gene switching, muscle fibre types, muscle mass, autocrine growth factors, IGF-1, muscular dystrophy

Full Text

The Full Text of this article is available as a PDF (610.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J., Liu J. P., Robertson E. J., Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993 Oct 8;75(1):73–82. [PubMed] [Google Scholar]
  2. Brahm H., Piehl-Aulin K., Saltin B., Ljunghall S. Net fluxes over working thigh of hormones, growth factors and biomarkers of bone metabolism during short lasting dynamic exercise. Calcif Tissue Int. 1997 Feb;60(2):175–180. doi: 10.1007/s002239900210. [DOI] [PubMed] [Google Scholar]
  3. Brunette D. M. Mechanical stretching increases the number of epithelial cells synthesizing DNA in culture. J Cell Sci. 1984 Jul;69:35–45. doi: 10.1242/jcs.69.1.35. [DOI] [PubMed] [Google Scholar]
  4. Butler-Browne G. S., Whalen R. G. Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Dev Biol. 1984 Apr;102(2):324–334. doi: 10.1016/0012-1606(84)90197-0. [DOI] [PubMed] [Google Scholar]
  5. Chang K. C., Fernandes K., Goldspink G. In vivo expression and molecular characterization of the porcine slow-myosin heavy chain. J Cell Sci. 1993 Sep;106(Pt 1):331–341. doi: 10.1242/jcs.106.1.331. [DOI] [PubMed] [Google Scholar]
  6. Chen C. W., Roy D. Up-regulation of nuclear IGF-I receptor by short term exposure of stilbene estrogen, diethylstilbestrol. Mol Cell Endocrinol. 1996 Apr 19;118(1-2):1–8. doi: 10.1016/0303-7207(96)03751-3. [DOI] [PubMed] [Google Scholar]
  7. Clarke M. S., Feeback D. L. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB J. 1996 Mar;10(4):502–509. doi: 10.1096/fasebj.10.4.8647349. [DOI] [PubMed] [Google Scholar]
  8. Coleman M. E., DeMayo F., Yin K. C., Lee H. M., Geske R., Montgomery C., Schwartz R. J. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem. 1995 May 19;270(20):12109–12116. doi: 10.1074/jbc.270.20.12109. [DOI] [PubMed] [Google Scholar]
  9. Coolican S. A., Samuel D. S., Ewton D. Z., McWade F. J., Florini J. R. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem. 1997 Mar 7;272(10):6653–6662. doi: 10.1074/jbc.272.10.6653. [DOI] [PubMed] [Google Scholar]
  10. Czerwinski S. M., Martin J. M., Bechtel P. J. Modulation of IGF mRNA abundance during stretch-induced skeletal muscle hypertrophy and regression. J Appl Physiol (1985) 1994 May;76(5):2026–2030. doi: 10.1152/jappl.1994.76.5.2026. [DOI] [PubMed] [Google Scholar]
  11. D'Ercole A. J., Ye P., Calikoglu A. S., Gutierrez-Ospina G. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol. 1996 Dec;13(3):227–255. doi: 10.1007/BF02740625. [DOI] [PubMed] [Google Scholar]
  12. Deng Z., Liu P., Marlton P., Claxton D. F., Lane S., Callen D. F., Collins F. S., Siciliano M. J. Smooth muscle myosin heavy chain locus (MYH11) maps to 16p13.13-p13.12 and establishes a new region of conserved synteny between human 16p and mouse 16. Genomics. 1993 Oct;18(1):156–159. doi: 10.1006/geno.1993.1443. [DOI] [PubMed] [Google Scholar]
  13. Engert J. C., Berglund E. B., Rosenthal N. Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol. 1996 Oct;135(2):431–440. doi: 10.1083/jcb.135.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ennion S., Sant'ana Pereira J., Sargeant A. J., Young A., Goldspink G. Characterization of human skeletal muscle fibres according to the myosin heavy chains they express. J Muscle Res Cell Motil. 1995 Feb;16(1):35–43. doi: 10.1007/BF00125308. [DOI] [PubMed] [Google Scholar]
  15. Florini J. R., Ewton D. Z., Coolican S. A. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev. 1996 Oct;17(5):481–517. doi: 10.1210/edrv-17-5-481. [DOI] [PubMed] [Google Scholar]
  16. GOLDSPINK G. INCREASE IN LENGTH OF SKELETAL MUSCLE DURING NORMAL GROWTH. Nature. 1964 Dec 12;204:1095–1096. doi: 10.1038/2041095a0. [DOI] [PubMed] [Google Scholar]
  17. Gauvry L., Ennion S., Hansen E., Butterworth P., Goldspink G. The characterisation of the 5' regulatory region of a temperature-induced myosin-heavy-chain gene associated with myotomal muscle growth in the carp. Eur J Biochem. 1996 Mar 15;236(3):887–894. doi: 10.1111/j.1432-1033.1996.00887.x. [DOI] [PubMed] [Google Scholar]
  18. Goldspink D. F., Cox V. M., Smith S. K., Eaves L. A., Osbaldeston N. J., Lee D. M., Mantle D. Muscle growth in response to mechanical stimuli. Am J Physiol. 1995 Feb;268(2 Pt 1):E288–E297. doi: 10.1152/ajpendo.1995.268.2.E288. [DOI] [PubMed] [Google Scholar]
  19. Goldspink G., Scutt A., Loughna P. T., Wells D. J., Jaenicke T., Gerlach G. F. Gene expression in skeletal muscle in response to stretch and force generation. Am J Physiol. 1992 Mar;262(3 Pt 2):R356–R363. doi: 10.1152/ajpregu.1992.262.3.R356. [DOI] [PubMed] [Google Scholar]
  20. Gregory P., Low R. B., Stirewalt W. S. Changes in skeletal-muscle myosin isoenzymes with hypertrophy and exercise. Biochem J. 1986 Aug 15;238(1):55–63. doi: 10.1042/bj2380055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Griffin G. E., Williams P. E., Goldspink G. Region of longitudinal growth in striated muscle fibres. Nat New Biol. 1971 Jul 7;232(27):28–29. doi: 10.1038/newbio232028a0. [DOI] [PubMed] [Google Scholar]
  22. Hamada K., Takuwa N., Yokoyama K., Takuwa Y. Stretch activates Jun N-terminal kinase/stress-activated protein kinase in vascular smooth muscle cells through mechanisms involving autocrine ATP stimulation of purinoceptors. J Biol Chem. 1998 Mar 13;273(11):6334–6340. doi: 10.1074/jbc.273.11.6334. [DOI] [PubMed] [Google Scholar]
  23. Harris R. C., Haralson M. A., Badr K. F. Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Invest. 1992 May;66(5):548–554. [PubMed] [Google Scholar]
  24. Hasegawa S., Sato S., Saito S., Suzuki Y., Brunette D. M. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif Tissue Int. 1985 Jul;37(4):431–436. doi: 10.1007/BF02553714. [DOI] [PubMed] [Google Scholar]
  25. Hník P., Vejsada R., Goldspink D. F., Kasicki S., Krekule I. Quantitative evaluation of electromyogram activity in rat extensor and flexor muscles immobilized at different lengths. Exp Neurol. 1985 Jun;88(3):515–528. doi: 10.1016/0014-4886(85)90067-6. [DOI] [PubMed] [Google Scholar]
  26. Hsu H. H., Zdanowicz M. M., Agarwal V. R., Speiser P. W. Expression of myogenic regulatory factors in normal and dystrophic mice: effects of IGF-1 treatment. Biochem Mol Med. 1997 Apr;60(2):142–148. doi: 10.1006/bmme.1997.2570. [DOI] [PubMed] [Google Scholar]
  27. Jones D. B., Nolte H., Scholübbers J. G., Turner E., Veltel D. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials. 1991 Mar;12(2):101–110. doi: 10.1016/0142-9612(91)90186-e. [DOI] [PubMed] [Google Scholar]
  28. Leinwand L. A., Fournier R. E., Nadal-Ginard B., Shows T. B. Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science. 1983 Aug 19;221(4612):766–769. doi: 10.1126/science.6879174. [DOI] [PubMed] [Google Scholar]
  29. Leinwand L. A., Saez L., McNally E., Nadal-Ginard B. Isolation and characterization of human myosin heavy chain genes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3716–3720. doi: 10.1073/pnas.80.12.3716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Loughna P. T., Izumo S., Goldspink G., Nadal-Ginard B. Disuse and passive stretch cause rapid alterations in expression of developmental and adult contractile protein genes in skeletal muscle. Development. 1990 May;109(1):217–223. doi: 10.1242/dev.109.1.217. [DOI] [PubMed] [Google Scholar]
  31. Loughna P., Goldspink G., Goldspink D. F. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles. J Appl Physiol (1985) 1986 Jul;61(1):173–179. doi: 10.1152/jappl.1986.61.1.173. [DOI] [PubMed] [Google Scholar]
  32. McKoy G., Ashley W., Mander J., Yang S. Y., Williams N., Russell B., Goldspink G. Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol. 1999 Apr 15;516(Pt 2):583–592. doi: 10.1111/j.1469-7793.1999.0583v.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McKoy G., Léger M. E., Bacou F., Goldspink G. Differential expression of myosin heavy chain mRNA and protein isoforms in four functionally diverse rabbit skeletal muscles during pre- and postnatal development. Dev Dyn. 1998 Mar;211(3):193–203. doi: 10.1002/(SICI)1097-0177(199803)211:3<193::AID-AJA1>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  34. McPherron A. C., Lawler A. M., Lee S. J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997 May 1;387(6628):83–90. doi: 10.1038/387083a0. [DOI] [PubMed] [Google Scholar]
  35. Oganov V. S., Potapov A. N. On the mechanisms of changes in skeletal muscles in the weightless environment. Life Sci Space Res. 1976;14:137–143. [PubMed] [Google Scholar]
  36. Perrone C. E., Fenwick-Smith D., Vandenburgh H. H. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J Biol Chem. 1995 Feb 3;270(5):2099–2106. doi: 10.1074/jbc.270.5.2099. [DOI] [PubMed] [Google Scholar]
  37. Pette D., Staron R. S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol. 1990;116:1–76. doi: 10.1007/3540528806_3. [DOI] [PubMed] [Google Scholar]
  38. Pette D., Vrbová G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve. 1985 Oct;8(8):676–689. doi: 10.1002/mus.880080810. [DOI] [PubMed] [Google Scholar]
  39. Pietrzkowski Z., Wernicke D., Porcu P., Jameson B. A., Baserga R. Inhibition of cellular proliferation by peptide analogues of insulin-like growth factor 1. Cancer Res. 1992 Dec 1;52(23):6447–6451. [PubMed] [Google Scholar]
  40. Powell-Braxton L., Hollingshead P., Warburton C., Dowd M., Pitts-Meek S., Dalton D., Gillett N., Stewart T. A. IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993 Dec;7(12B):2609–2617. doi: 10.1101/gad.7.12b.2609. [DOI] [PubMed] [Google Scholar]
  41. Roberts S. G., Green M. R. Transcription. Dichotomous regulators. Nature. 1995 May 11;375(6527):105–106. doi: 10.1038/375105a0. [DOI] [PubMed] [Google Scholar]
  42. Rudman D., Kutner M. H., Rogers C. M., Lubin M. F., Fleming G. A., Bain R. P. Impaired growth hormone secretion in the adult population: relation to age and adiposity. J Clin Invest. 1981 May;67(5):1361–1369. doi: 10.1172/JCI110164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sadoshima J., Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 1997;59:551–571. doi: 10.1146/annurev.physiol.59.1.551. [DOI] [PubMed] [Google Scholar]
  44. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  45. Sreter F. A., Pinter K., Jolesz F., Mabuchi K. Fast to slow transformation of fast muscles in response to long-term phasic stimulation. Exp Neurol. 1982 Jan;75(1):95–102. doi: 10.1016/0014-4886(82)90009-7. [DOI] [PubMed] [Google Scholar]
  46. Sumpio B. E., Banes A. J., Buckley M., Johnson G., Jr Alterations in aortic endothelial cell morphology and cytoskeletal protein synthesis during cyclic tensional deformation. J Vasc Surg. 1988 Jan;7(1):130–138. [PubMed] [Google Scholar]
  47. Sumpio B. E., Banes A. J., Levin L. G., Johnson G., Jr Mechanical stress stimulates aortic endothelial cells to proliferate. J Vasc Surg. 1987 Sep;6(3):252–256. [PubMed] [Google Scholar]
  48. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev. 1986 Jul;66(3):710–771. doi: 10.1152/physrev.1986.66.3.710. [DOI] [PubMed] [Google Scholar]
  49. Tabary J. C., Tabary C., Tardieu C., Tardieu G., Goldspink G. Physiological and structural changes in the cat's soleus muscle due to immobilization at different lengths by plaster casts. J Physiol. 1972 Jul;224(1):231–244. doi: 10.1113/jphysiol.1972.sp009891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tabary J. C., Tardieu C., Tardieu G., Tabary C. Experimental rapid sarcomere loss with concomitant hypoextensibility. Muscle Nerve. 1981 May-Jun;4(3):198–203. doi: 10.1002/mus.880040305. [DOI] [PubMed] [Google Scholar]
  51. Tsika G. L., Wiedenman J. L., Gao L., McCarthy J. J., Sheriff-Carter K., Rivera-Rivera I. D., Tsika R. W. Induction of beta-MHC transgene in overloaded skeletal muscle is not eliminated by mutation of conserved elements. Am J Physiol. 1996 Aug;271(2 Pt 1):C690–C699. doi: 10.1152/ajpcell.1996.271.2.C690. [DOI] [PubMed] [Google Scholar]
  52. Weintraub H., Tapscott S. J., Davis R. L., Thayer M. J., Adam M. A., Lassar A. B., Miller A. D. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5434–5438. doi: 10.1073/pnas.86.14.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Williams P. E., Goldspink G. The effect of immobilization on the longitudinal growth of striated muscle fibres. J Anat. 1973 Oct;116(Pt 1):45–55. [PMC free article] [PubMed] [Google Scholar]
  54. Williams P., Watt P., Bicik V., Goldspink G. Effect of stretch combined with electrical stimulation on the type of sarcomeres produced at the ends of muscle fibers. Exp Neurol. 1986 Sep;93(3):500–509. doi: 10.1016/0014-4886(86)90170-6. [DOI] [PubMed] [Google Scholar]
  55. Williams R. S., Salmons S., Newsholme E. A., Kaufman R. E., Mellor J. Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem. 1986 Jan 5;261(1):376–380. [PubMed] [Google Scholar]
  56. Yang H., Alnaqeeb M., Simpson H., Goldspink G. Changes in muscle fibre type, muscle mass and IGF-I gene expression in rabbit skeletal muscle subjected to stretch. J Anat. 1997 May;190(Pt 4):613–622. doi: 10.1046/j.1469-7580.1997.19040613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yang S., Alnaqeeb M., Simpson H., Goldspink G. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil. 1996 Aug;17(4):487–495. doi: 10.1007/BF00123364. [DOI] [PubMed] [Google Scholar]
  58. Zdanowicz M. M., Moyse J., Wingertzahn M. A., O'Connor M., Teichberg S., Slonim A. E. Effect of insulin-like growth factor I in murine muscular dystrophy. Endocrinology. 1995 Nov;136(11):4880–4886. doi: 10.1210/endo.136.11.7588220. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES