Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1999 Apr;194(Pt 3):355–362. doi: 10.1046/j.1469-7580.1999.19430355.x

Regional differences in fibre type composition in the human temporalis muscle

J A M KORFAGE 1,, T M G J VAN EIJDEN 1
PMCID: PMC1467935  PMID: 10386773

Abstract

Anatomical and electromyographic studies point to regional differences in function in the human temporalis muscle. During chewing and biting the anterior portions of the muscle are in general more intensively activated and they are capable of producing larger forces than the posterior portions. It was hypothetised that this heterogeneity in function is reflected in the fibre type composition of the muscle. The composition and surface area of different fibre types in various anteroposterior portions of the temporalis muscle were investigated in 7 cadavers employing immunohistochemistry with a panel of monoclonal antibodies against different isoforms of myosin heavy chain. Pure slow muscle fibres, type I, differed strongly in number across the muscle. In the most posterior portion of the muscle there were 24% type I fibres, in the intermediate portion 57%, and in the most anterior portion 46%. The mean fibre cross-sectional area (m-fcsa) of type I fibres was 1849 μm2, which did not differ significantly across the muscle. The proportion of pure fast muscle fibres, type IIA and IIX, remained more or less constant throughout the muscle at 13% and 11% respectively; their m-fcsa was 1309 μm2 and 1206 μm2, respectively, which did not differ significantly throughout the muscle. Pure type IIB fibres were not found. The relative proportion of hybrid fibres was 31% and did not differ significantly among the muscle portions. Fibre types I+IIA and cardiac α+I+IIA were the most abundant hybrid fibre types. In addition, 5% of the type I fibres had an additional myosin isoform which has only recently been described by means of electrophoresis and was named Ia. In the present study they were denoted as hybrid type I+Ia muscle fibres. It is concluded that intramuscular differences in type I fibre distribution are in accordance with regional differences in muscle function.

Keywords: Masticatory muscles, myosin, temporalis muscle

Full Text

The Full Text of this article is available as a PDF (337.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aigner S., Gohlsch B., Hämäläinen N., Staron R. S., Uber A., Wehrle U., Pette D. Fast myosin heavy chain diversity in skeletal muscles of the rabbit: heavy chain IId, not IIb predominates. Eur J Biochem. 1993 Jan 15;211(1-2):367–372. doi: 10.1111/j.1432-1033.1993.tb19906.x. [DOI] [PubMed] [Google Scholar]
  2. Blanksma N. G., Van Eijden T. M. Electromyographic heterogeneity in the human temporalis muscle. J Dent Res. 1990 Oct;69(10):1686–1690. doi: 10.1177/00220345900690101101. [DOI] [PubMed] [Google Scholar]
  3. Blanksma N. G., van Eijden T. M. Electromyographic heterogeneity in the human temporalis and masseter muscles during static biting, open/close excursions, and chewing. J Dent Res. 1995 Jun;74(6):1318–1327. doi: 10.1177/00220345950740061201. [DOI] [PubMed] [Google Scholar]
  4. Blanksma N. G., van Eijden T. M., van Ruijven L. J., Weijs W. A. Electromyographic heterogeneity in the human temporalis and masseter muscles during dynamic tasks guided by visual feedback. J Dent Res. 1997 Jan;76(1):542–551. doi: 10.1177/00220345970760010401. [DOI] [PubMed] [Google Scholar]
  5. Bredman J. J., Wessels A., Weijs W. A., Korfage J. A., Soffers C. A., Moorman A. F. Demonstration of 'cardiac-specific' myosin heavy chain in masticatory muscles of human and rabbit. Histochem J. 1991 Apr;23(4):160–170. doi: 10.1007/BF01046587. [DOI] [PubMed] [Google Scholar]
  6. Butler-Browne G. S., Eriksson P. O., Laurent C., Thornell L. E. Adult human masseter muscle fibers express myosin isozymes characteristic of development. Muscle Nerve. 1988 Jun;11(6):610–620. doi: 10.1002/mus.880110614. [DOI] [PubMed] [Google Scholar]
  7. Clarkson P. M., Kroll W., Melchionda A. M. Age, isometric strength, rate of tension development and fiber type composition. J Gerontol. 1981 Nov;36(6):648–653. doi: 10.1093/geronj/36.6.648. [DOI] [PubMed] [Google Scholar]
  8. DeNardi C., Ausoni S., Moretti P., Gorza L., Velleca M., Buckingham M., Schiaffino S. Type 2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene. J Cell Biol. 1993 Nov;123(4):823–835. doi: 10.1083/jcb.123.4.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeRuiter C. J., De Haan A., Sargeant A. J. Fast-twitch muscle unit properties in different rat medial gastrocnemius muscle compartments. J Neurophysiol. 1996 Jun;75(6):2243–2254. doi: 10.1152/jn.1996.75.6.2243. [DOI] [PubMed] [Google Scholar]
  10. Edgerton V. R., Smith J. L., Simpson D. R. Muscle fibre type populations of human leg muscles. Histochem J. 1975 May;7(3):259–266. doi: 10.1007/BF01003594. [DOI] [PubMed] [Google Scholar]
  11. Eriksson P. O., Thornell L. E. Histochemical and morphological muscle-fibre characteristics of the human masseter, the medial pterygoid and the temporal muscles. Arch Oral Biol. 1983;28(9):781–795. doi: 10.1016/0003-9969(83)90034-1. [DOI] [PubMed] [Google Scholar]
  12. Galler S., Hilber K., Gohlsch B., Pette D. Two functionally distinct myosin heavy chain isoforms in slow skeletal muscle fibres. FEBS Lett. 1997 Jun 30;410(2-3):150–152. doi: 10.1016/s0014-5793(97)00556-5. [DOI] [PubMed] [Google Scholar]
  13. Gillott K. L., Cox V. M., Wright H., Eaves L. A., Williams P. E., Goldspink D. F. The fibre type composition of the rabbit latissimus dorsi muscle. J Anat. 1994 Aug;185(Pt 1):173–179. [PMC free article] [PubMed] [Google Scholar]
  14. Gorza L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J Histochem Cytochem. 1990 Feb;38(2):257–265. doi: 10.1177/38.2.2137154. [DOI] [PubMed] [Google Scholar]
  15. Green H. J., Daub B., Houston M. E., Thomson J. A., Fraser I., Ranney D. Human vastus lateralis and gastrocnemius muscles. A comparative histochemical and biochemical analysis. J Neurol Sci. 1981 Nov-Dec;52(2-3):201–210. doi: 10.1016/0022-510x(81)90005-8. [DOI] [PubMed] [Google Scholar]
  16. HENNEMAN E., SOMJEN G., CARPENTER D. O. FUNCTIONAL SIGNIFICANCE OF CELL SIZE IN SPINAL MOTONEURONS. J Neurophysiol. 1965 May;28:560–580. doi: 10.1152/jn.1965.28.3.560. [DOI] [PubMed] [Google Scholar]
  17. Hancock M. B. A serotonin-immunoreactive fiber system in the dorsal columns of the spinal cord. Neurosci Lett. 1982 Aug 31;31(3):247–252. doi: 10.1016/0304-3940(82)90028-3. [DOI] [PubMed] [Google Scholar]
  18. Kwa S. H., Weijs W. A., Jüch P. J. Contraction characteristics and myosin heavy chain composition of rabbit masseter motor units. J Neurophysiol. 1995 Feb;73(2):538–549. doi: 10.1152/jn.1995.73.2.538. [DOI] [PubMed] [Google Scholar]
  19. Larsson L., Biral D., Campione M., Schiaffino S. An age-related type IIB to IIX myosin heavy chain switching in rat skeletal muscle. Acta Physiol Scand. 1993 Feb;147(2):227–234. doi: 10.1111/j.1748-1716.1993.tb09493.x. [DOI] [PubMed] [Google Scholar]
  20. Lexell J. Ageing and human muscle: observations from Sweden. Can J Appl Physiol. 1993 Mar;18(1):2–18. doi: 10.1139/h93-002. [DOI] [PubMed] [Google Scholar]
  21. Lexell J., Jarvis J. C., Currie J., Downham D. Y., Salmons S. Fibre type composition of rabbit tibialis anterior and extensor digitorum longus muscles. J Anat. 1994 Aug;185(Pt 1):95–101. [PMC free article] [PubMed] [Google Scholar]
  22. Lexell J., Taylor C. C., Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988 Apr;84(2-3):275–294. doi: 10.1016/0022-510x(88)90132-3. [DOI] [PubMed] [Google Scholar]
  23. Mao J., Stein R. B., Osborn J. W. The size and distribution of fiber types in jaw muscles: a review. J Craniomandib Disord. 1992 Summer;6(3):192–201. [PubMed] [Google Scholar]
  24. McMillan A. S. Task-related behaviour of motor units in the human temporalis muscle. Exp Brain Res. 1993;94(2):336–342. doi: 10.1007/BF00230303. [DOI] [PubMed] [Google Scholar]
  25. Monemi M., Eriksson P. O., Dubail I., Butler-Browne G. S., Thornell L. E. Fetal myosin heavy chain increases in human masseter muscle during aging. FEBS Lett. 1996 May 13;386(1):87–90. doi: 10.1016/0014-5793(96)00402-4. [DOI] [PubMed] [Google Scholar]
  26. Monemi M., Eriksson P. O., Eriksson A., Thornell L. E. Adverse changes in fibre type composition of the human masseter versus biceps brachii muscle during aging. J Neurol Sci. 1998 Jan 21;154(1):35–48. doi: 10.1016/s0022-510x(97)00208-6. [DOI] [PubMed] [Google Scholar]
  27. Pette D., Staron R. S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol. 1990;116:1–76. doi: 10.1007/3540528806_3. [DOI] [PubMed] [Google Scholar]
  28. Pette D., Vrbová G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve. 1985 Oct;8(8):676–689. doi: 10.1002/mus.880080810. [DOI] [PubMed] [Google Scholar]
  29. Polgar J., Johnson M. A., Weightman D., Appleton D. Data on fibre size in thirty-six human muscles. An autopsy study. J Neurol Sci. 1973 Jul;19(3):307–318. doi: 10.1016/0022-510x(73)90094-4. [DOI] [PubMed] [Google Scholar]
  30. Reiser P. J., Moss R. L., Giulian G. G., Greaser M. L. Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. J Biol Chem. 1985 Aug 5;260(16):9077–9080. [PubMed] [Google Scholar]
  31. Ringqvist M. Fiber types in human masticatory muscles. Relation to function. Scand J Dent Res. 1974;82(4):333–355. doi: 10.1111/j.1600-0722.1974.tb00388.x. [DOI] [PubMed] [Google Scholar]
  32. Sartore S., Gorza L., Schiaffino S. Fetal myosin heavy chains in regenerating muscle. Nature. 1982 Jul 15;298(5871):294–296. doi: 10.1038/298294a0. [DOI] [PubMed] [Google Scholar]
  33. Schiaffino S., Ausoni S., Gorza L., Saggin L., Gundersen K., Lomo T. Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres. Acta Physiol Scand. 1988 Dec;134(4):575–576. doi: 10.1111/j.1748-1716.1998.tb08539.x. [DOI] [PubMed] [Google Scholar]
  34. Schiaffino S., Gorza L., Sartore S., Saggin L., Ausoni S., Vianello M., Gundersen K., Lømo T. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989 Jun;10(3):197–205. doi: 10.1007/BF01739810. [DOI] [PubMed] [Google Scholar]
  35. Schiaffino S., Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996 Apr;76(2):371–423. doi: 10.1152/physrev.1996.76.2.371. [DOI] [PubMed] [Google Scholar]
  36. Schiaffino S., Reggiani C. Myosin isoforms in mammalian skeletal muscle. J Appl Physiol (1985) 1994 Aug;77(2):493–501. doi: 10.1152/jappl.1994.77.2.493. [DOI] [PubMed] [Google Scholar]
  37. Sciote J. J., Rowlerson A. M., Hopper C., Hunt N. P. Fibre type classification and myosin isoforms in the human masseter muscle. J Neurol Sci. 1994 Oct;126(1):15–24. doi: 10.1016/0022-510x(94)90089-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smerdu V., Karsch-Mizrachi I., Campione M., Leinwand L., Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol. 1994 Dec;267(6 Pt 1):C1723–C1728. doi: 10.1152/ajpcell.1994.267.6.C1723. [DOI] [PubMed] [Google Scholar]
  39. Soussi-Yanicostas N., Barbet J. P., Laurent-Winter C., Barton P., Butler-Browne G. S. Transition of myosin isozymes during development of human masseter muscle. Persistence of developmental isoforms during postnatal stage. Development. 1990 Feb;108(2):239–249. doi: 10.1242/dev.108.2.239. [DOI] [PubMed] [Google Scholar]
  40. Sugiura T., Matoba H., Miyata H., Kawai Y., Murakami N. Myosin heavy chain isoform transition in ageing fast and slow muscles of the rat. Acta Physiol Scand. 1992 Apr;144(4):419–423. doi: 10.1111/j.1748-1716.1992.tb09315.x. [DOI] [PubMed] [Google Scholar]
  41. Van Eijden T. M., Brugman P., Weijs W. A., Oosting J. Coactivation of jaw muscles: recruitment order and level as a function of bite force direction and magnitude. J Biomech. 1990;23(5):475–485. doi: 10.1016/0021-9290(90)90303-k. [DOI] [PubMed] [Google Scholar]
  42. Van Eijden T. M., Korfage J. A., Brugman P. Architecture of the human jaw-closing and jaw-opening muscles. Anat Rec. 1997 Jul;248(3):464–474. doi: 10.1002/(sici)1097-0185(199707)248:3<464::aid-ar20>3.3.co;2-4. [DOI] [PubMed] [Google Scholar]
  43. Wood W. W. A functional comparison of the deep and superficial parts of the human anterior temporal muscle. J Dent Res. 1986 Jun;65(6):924–926. doi: 10.1177/00220345860650061301. [DOI] [PubMed] [Google Scholar]
  44. van Eijden T. M., Koolstra J. H., Brugman P. Three-dimensional structure of the human temporalis muscle. Anat Rec. 1996 Dec;246(4):565–572. doi: 10.1002/(SICI)1097-0185(199612)246:4<565::AID-AR17>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES