Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 1;25(13):2627–2634. doi: 10.1093/nar/25.13.2627

Conformational properties and thermodynamics of the RNA duplex r(CGCAAAUUUGCG)2: comparison with the DNA analogue d(CGCAAATTTGCG)2.

M R Conte 1, G L Conn 1, T Brown 1, A N Lane 1
PMCID: PMC146795  PMID: 9185574

Abstract

The thermodynamic stability of nine dodecamers (four DNA and five RNA) of the same base composition has been compared by UV-melting. TheDeltaG of stabilisation were in the order: r(GACUGAUCAGUC)2>r(CGCAAATTTGCG)2 approximately r(CGCAUAUAUGCG)2>d(CGCAAATTTGCG)2 approximately r(CGCAAAUUUGCG)2>d(CGCATATATGCG)2 approximately d(GACTGATCAGTC)2>r(CGCUUUAAAGCG)2 approximately d(CGCTTTAAAGCG)2. Compared with the mixed sequences, both r(AAAUUU) and r(UUUAAA) are greatly destablising in RNA, whereas in DNA, d(TTTAAA) is destabilising but d(AAATTT) is stabilising, which has been attributed to the formation of a special B'structure involving large propeller twists of the A-T base pairs. The solution structure of the RNA dodecamer r(CGCAAAUUUGCG)2has been determined using NMR and restrained molecular dynamics calculations to assess the conformational reasons for its stability in comparison with d(CGCAAATTTGCG)2. The structures refined to a mean pairwise r.m.s.d. of 0.89+/-0.29 A. The nucleotide conformations are typical of the A family of structures. However, although the helix axis displacement is approximately 4.6 A into the major groove, the rise (3.0 A) and base inclination ( approximately 6 degrees ) are different from standard A form RNA. The extensive base-stacking found in the AAATTT tract of the DNA homologue that is largely responsible for the higher thermodynamic stability of the DNA duplex is reduced in the RNA structure, which may account for its low relative stability.

Full Text

The Full Text of this article is available as a PDF (201.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birchall A. J., Lane A. N. Anisotropic rotation in nucleic acid fragments: significance for determination of structures from NMR data. Eur Biophys J. 1990;19(2):73–78. doi: 10.1007/BF00185089. [DOI] [PubMed] [Google Scholar]
  2. Conte M. R., Conn G. L., Brown T., Lane A. N. Hydration of the RNA duplex r(CGCAAAUUUGCG)2 determined by NMR. Nucleic Acids Res. 1996 Oct 1;24(19):3693–3699. doi: 10.1093/nar/24.19.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dickerson R. E., Drew H. R. Structure of a B-DNA dodecamer. II. Influence of base sequence on helix structure. J Mol Biol. 1981 Jul 15;149(4):761–786. doi: 10.1016/0022-2836(81)90357-0. [DOI] [PubMed] [Google Scholar]
  4. Dock-Bregeon A. C., Chevrier B., Podjarny A., Moras D., deBear J. S., Gough G. R., Gilham P. T., Johnson J. E. High resolution structure of the RNA duplex [U(U-A)6A]2. Nature. 1988 Sep 22;335(6188):375–378. doi: 10.1038/335375a0. [DOI] [PubMed] [Google Scholar]
  5. Ebel S., Brown T., Lane A. N. Thermodynamic stability and solution conformation of tandem G.A mismatches in RNA and RNA.DNA hybrid duplexes. Eur J Biochem. 1994 Mar 15;220(3):703–715. doi: 10.1111/j.1432-1033.1994.tb18671.x. [DOI] [PubMed] [Google Scholar]
  6. Edwards K. J., Brown D. G., Spink N., Skelly J. V., Neidle S. Molecular structure of the B-DNA dodecamer d(CGCAAATTTGCG)2. An examination of propeller twist and minor-groove water structure at 2.2 A resolution. J Mol Biol. 1992 Aug 20;226(4):1161–1173. doi: 10.1016/0022-2836(92)91059-x. [DOI] [PubMed] [Google Scholar]
  7. Egli M., Portmann S., Usman N. RNA hydration: a detailed look. Biochemistry. 1996 Jul 2;35(26):8489–8494. doi: 10.1021/bi9607214. [DOI] [PubMed] [Google Scholar]
  8. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorenstein D. G. 31P NMR of DNA. Methods Enzymol. 1992;211:254–286. doi: 10.1016/0076-6879(92)11016-c. [DOI] [PubMed] [Google Scholar]
  10. Guéron M., Leroy J. L. Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol. 1995;261:383–413. doi: 10.1016/s0076-6879(95)61018-9. [DOI] [PubMed] [Google Scholar]
  11. Gyi J. I., Conn G. L., Lane A. N., Brown T. Comparison of the thermodynamic stabilities and solution conformations of DNA.RNA hybrids containing purine-rich and pyrimidine-rich strands with DNA and RNA duplexes. Biochemistry. 1996 Sep 24;35(38):12538–12548. doi: 10.1021/bi960948z. [DOI] [PubMed] [Google Scholar]
  12. Jenkins T. C., Lane A. N. AT selectivity and DNA minor groove binding: modelling, NMR and structural studies of the interactions of propamidine and pentamidine with d(CGCGAATTCGCG)2. Biochim Biophys Acta. 1997 Feb 7;1350(2):189–204. doi: 10.1016/s0167-4781(96)00160-1. [DOI] [PubMed] [Google Scholar]
  13. Jenkins T. C., Lane A. N., Neidle S., Brown D. G. NMR and molecular modeling studies of the interaction of berenil and pentamidine with d(CGCAAATTTGCG)2. Eur J Biochem. 1993 May 1;213(3):1175–1184. doi: 10.1111/j.1432-1033.1993.tb17868.x. [DOI] [PubMed] [Google Scholar]
  14. Lane A. N., Lefèvre J. F. Nuclear magnetic resonance measurements of slow conformational dynamics in macromolecules. Methods Enzymol. 1994;239:596–619. doi: 10.1016/s0076-6879(94)39023-1. [DOI] [PubMed] [Google Scholar]
  15. Lane A. N. The determination of the conformational properties of nucleic acids in solution from NMR data. Biochim Biophys Acta. 1990 Jun 21;1049(2):189–204. doi: 10.1016/0167-4781(90)90040-9. [DOI] [PubMed] [Google Scholar]
  16. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  17. Legault P., Pardi A. 31P chemical shift as a probe of structural motifs in RNA. J Magn Reson B. 1994 Jan;103(1):82–86. doi: 10.1006/jmrb.1994.1012. [DOI] [PubMed] [Google Scholar]
  18. Leonard G. A., McAuley-Hecht K. E., Ebel S., Lough D. M., Brown T., Hunter W. N. Crystal and molecular structure of r(CGCGAAUUAGCG): an RNA duplex containing two G(anti).A(anti) base pairs. Structure. 1994 Jun 15;2(6):483–494. doi: 10.1016/S0969-2126(00)00049-6. [DOI] [PubMed] [Google Scholar]
  19. Lesnik E. A., Freier S. M. Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structure. Biochemistry. 1995 Aug 29;34(34):10807–10815. doi: 10.1021/bi00034a013. [DOI] [PubMed] [Google Scholar]
  20. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  21. Nelson H. C., Finch J. T., Luisi B. F., Klug A. The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature. 1987 Nov 19;330(6145):221–226. doi: 10.1038/330221a0. [DOI] [PubMed] [Google Scholar]
  22. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  23. Portmann S., Usman N., Egli M. The crystal structure of r(CCCCGGGG) in two distinct lattices. Biochemistry. 1995 Jun 13;34(23):7569–7575. doi: 10.1021/bi00023a002. [DOI] [PubMed] [Google Scholar]
  24. Privé G. G., Heinemann U., Chandrasegaran S., Kan L. S., Kopka M. L., Dickerson R. E. Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. Science. 1987 Oct 23;238(4826):498–504. doi: 10.1126/science.3310237. [DOI] [PubMed] [Google Scholar]
  25. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  26. SantaLucia J., Jr, Allawi H. T., Seneviratne P. A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry. 1996 Mar 19;35(11):3555–3562. doi: 10.1021/bi951907q. [DOI] [PubMed] [Google Scholar]
  27. Schmitz U., Ulyanov N. B., Kumar A., James T. L. Molecular dynamics with weighted time-averaged restraints for a DNA octamer. Dynamic interpretation of nuclear magnetic resonance data. J Mol Biol. 1993 Nov 20;234(2):373–389. doi: 10.1006/jmbi.1993.1593. [DOI] [PubMed] [Google Scholar]
  28. Searle M. S., Williams D. H. On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Nucleic Acids Res. 1993 May 11;21(9):2051–2056. doi: 10.1093/nar/21.9.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wahl M. C., Ban C., Sekharudu C., Ramakrishnan B., Sundaralingam M. Structure of the purine-pyrimidine alternating RNA double helix, r(GUAUAUA)d(C), with a 3'-terminal deoxy residue. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):655–667. doi: 10.1107/S0907444996000248. [DOI] [PubMed] [Google Scholar]
  30. Wang S., Kool E. T. Origins of the large differences in stability of DNA and RNA helices: C-5 methyl and 2'-hydroxyl effects. Biochemistry. 1995 Mar 28;34(12):4125–4132. doi: 10.1021/bi00012a031. [DOI] [PubMed] [Google Scholar]
  31. Williamson J. R., Boxer S. G. Multinuclear NMR studies of DNA hairpins. 1. Structure and dynamics of d(CGCGTTGTTCGCG). Biochemistry. 1989 Apr 4;28(7):2819–2831. doi: 10.1021/bi00433a012. [DOI] [PubMed] [Google Scholar]
  32. van Wijk J., Huckriede B. D., Ippel J. H., Altona C. Furanose sugar conformations in DNA from NMR coupling constants. Methods Enzymol. 1992;211:286–306. doi: 10.1016/0076-6879(92)11017-d. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES