Abstract
As part of a large comparative study on the development of reptilian skin, we provide the first ultrastructural description of differentiation of the epidermis of the carapace and plastron in the Chelonia, using the Australian pleurodiran turtle Emydura macquarii as a model. The epidermis is initially composed of an external flat peridermis and a basal layer of cuboidal cells. During differentiation, the peridermis darkens, flakes off and is partially lost before hatching. Four to 6 layers of flat cells containing lipids and mucus form from the basal layer beneath the external peridermis. Because such cells are found only during embryogenesis, we have referred to these layers as embryonic epidermis. They contain reticulate bodies made of a meshwork of coarse filaments similar to those described in the inner peridermis of lizard and bird embryos. In advanced embryos, cells of the embryonic epidermis condense into a thin dark stratum which is subsequently lost after hatching. The lowermost 2 layers of the embryonic epidermis keratinise, as for a typical lepidosaurian α-layer. A splitting zone is progressively formed beneath the α-layer to separate the embryonic epidermis from the underlying β-layer. Patterns of cytodifferentiation of the β-synthesising cells over the carapace and plastron essentially resemble those of the lepidosaurian epidermis. The β-keratin matrix initially accumulates among ribosomes as round bodies not clearly surrounded by a membrane. These bodies appear not to be derived from the Golgi apparatus. Melanosomes and other dark granules of uncertain nature are present among early differentiating β-cells. The round β-keratin bodies merge with the dense bodies to produce the definitive variegated pattern of the mature β-keratin layer. The histochemistry suggests that calcium combines with organic molecules within β-keratinising cells to harden the tissue. In contrast to the β-keratin cells of lizards and snakes, cells of the mature β-keratin layer of E. macquarii maintain their cell boundaries in part or completely, a characteristics shared with the β-keratin layer of Sphenodon and crocodilians.
Keywords: Chelonians, keratin epidermis, structure, shell
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander N. J., Parakkal P. F. Formation of alpha- and beta-type keratin in lizard epidermis during the molting cycle. Z Zellforsch Mikrosk Anat. 1969 Oct 1;101(1):72–87. doi: 10.1007/BF00335586. [DOI] [PubMed] [Google Scholar]
- Alibardi L. Differentiation of the epidermis during scale formation in embryos of lizard. J Anat. 1998 Feb;192(Pt 2):173–186. doi: 10.1046/j.1469-7580.1998.19220173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baden H. P., Maderson P. F. Morphological and biophysical identification of fibrous proteins in the amniote epidermis. J Exp Zool. 1970 Jun;174(2):225–232. doi: 10.1002/jez.1401740211. [DOI] [PubMed] [Google Scholar]
- Baden H., Sviokla S., Roth I. The structural protein of reptilian scales. J Exp Zool. 1974 Feb;187(2):287–294. doi: 10.1002/jez.1401870212. [DOI] [PubMed] [Google Scholar]
- Budtz P. E., Larsen L. O. Structure of the toad epidermis during the moulting cycle. II. Electron microscopic observations on Bufo bufo (L.). Cell Tissue Res. 1975 Jun 24;159(4):459–483. doi: 10.1007/BF00221703. [DOI] [PubMed] [Google Scholar]
- Flaxman B. A., Maderson P. F., Szabó G., Roth S. I. Control of cell differentiation in lizard epidermis in vitro. Dev Biol. 1968 Oct;18(4):354–374. doi: 10.1016/0012-1606(68)90046-8. [DOI] [PubMed] [Google Scholar]
- Fukuyama K., Epstein W. L. Heterogeneous ultrastructure of keratohyalin granules: a comparative study of adjacent skin and mucous membrane. J Invest Dermatol. 1973 Aug;61(2):94–100. doi: 10.1111/1523-1747.ep12675419. [DOI] [PubMed] [Google Scholar]
- Fukuyama K., Epstein W. L. Protein synthesis studies by autoradiography in the epidermis of different species. Am J Anat. 1968 Mar;122(2):269–273. doi: 10.1002/aja.1001220207. [DOI] [PubMed] [Google Scholar]
- Hardy M. H., Sweeny P. R., Bellows C. G. The effects of vitamin A on the epidermis of the fetal mouse in organ culture--an ultrastructural study. J Ultrastruct Res. 1978 Sep;64(3):246–260. doi: 10.1016/s0022-5320(78)90034-5. [DOI] [PubMed] [Google Scholar]
- Iwasaki S., Asami T., Wanichanon C. Fine structure of the dorsal lingual epithelium of the juvenile hawksbill turtle, Eretmochelys imbricata bissa. Anat Rec. 1996 Apr;244(4):437–443. doi: 10.1002/(SICI)1097-0185(199604)244:4<437::AID-AR2>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Iwasaki S., Wanichanon C., Asami T. Histological and ultrastructural study of the lingual epithelium of the juvenile Pacific ridley turtle, Lepidochelys olivacea (Chelonia, Cheloniidae). Ann Anat. 1996 Jun;178(3):243–250. doi: 10.1016/s0940-9602(96)80057-4. [DOI] [PubMed] [Google Scholar]
- Landmann L. Lamellar granules in mammalian, avian, and reptilian epidermis. J Ultrastruct Res. 1980 Sep;72(3):245–263. doi: 10.1016/s0022-5320(80)90062-3. [DOI] [PubMed] [Google Scholar]
- Lavker R. M. Horny cell formation in the epidermis of Rana pipiens. J Morphol. 1974 Apr;142(4):365–377. doi: 10.1002/jmor.1051420402. [DOI] [PubMed] [Google Scholar]
- Matoltsy A. G., Bednarz J. A. Lamellar bodies of the turtle epidermis. J Ultrastruct Res. 1975 Oct;53(1):128–132. doi: 10.1016/s0022-5320(75)80092-x. [DOI] [PubMed] [Google Scholar]
- Matoltsy A. G., Huszar T. Keratinization of the reptilian epidermis: an ultrastructural study of the turtle skin. J Ultrastruct Res. 1972 Jan;38(1):87–101. doi: 10.1016/s0022-5320(72)90085-8. [DOI] [PubMed] [Google Scholar]
- Matoltsy A. G. The molecular and developmental biology of keratins. Concluding remarks and future directions. Curr Top Dev Biol. 1987;22:255–264. [PubMed] [Google Scholar]
- Matulionis D. H. Morphology of the developing down feathers of chick embryos. A descriptive study at the ultrastructural level of differentiation and keratinization. Z Anat Entwicklungsgesch. 1970;132(2):107–157. doi: 10.1007/BF00523275. [DOI] [PubMed] [Google Scholar]
- Menon G. K., Maderson P. F., Drewes R. C., Baptista L. F., Price L. F., Elias P. M. Ultrastructural organization of avian stratum corneum lipids as the basis for facultative cutaneous waterproofing. J Morphol. 1996 Jan;227(1):1–13. doi: 10.1002/(SICI)1097-4687(199601)227:1<1::AID-JMOR1>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- Mottet N. K., Jensen H. M. The differentiation of chick embryonic skin. An electron microscopic study with a description of a peculiar epidermal cytoplasmic ultrastructure. Exp Cell Res. 1968 Sep;52(1):261–283. doi: 10.1016/0014-4827(68)90564-8. [DOI] [PubMed] [Google Scholar]
- PARAKKAL P. F., MATOLTSY A. G. A STUDY OF THE FINE STRUCTURE OF THE EPIDERMIS OF RANA PIPIENS. J Cell Biol. 1964 Jan;20:85–94. doi: 10.1083/jcb.20.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parakkal P. F., Matoltsy A. G. An electron microscopic study of developing chick skin. J Ultrastruct Res. 1968 Jun;23(5):403–416. doi: 10.1016/s0022-5320(68)80106-6. [DOI] [PubMed] [Google Scholar]
- Roth S. I., Jones W. A. The ultrastructure of epidermal maturation in the skin of the boa constrictor (Constrictor constrictor). J Ultrastruct Res. 1970 Jul;32(1):69–93. doi: 10.1016/s0022-5320(70)80038-7. [DOI] [PubMed] [Google Scholar]
- Spearman R. I. The keratinization of epidermal scales, feathers and hairs. Biol Rev Camb Philos Soc. 1966 Feb;41(1):59–96. doi: 10.1111/j.1469-185x.1966.tb01538.x. [DOI] [PubMed] [Google Scholar]
- Wyld J. A., Brush A. H. The molecular heterogeneity and diversity of reptilian keratins. J Mol Evol. 1979 Apr 12;12(4):331–347. doi: 10.1007/BF01732028. [DOI] [PubMed] [Google Scholar]
- Yntema C. L. A series of stages in the embryonic development of Chelydra serpentina. J Morphol. 1968 Jun;125(2):219–251. doi: 10.1002/jmor.1051250207. [DOI] [PubMed] [Google Scholar]