Abstract
The subchondral bone plate supports the articular cartilage in diarthrodial joints. It has a significant mechanical function in transmitting loads from the cartilage into the underlying cancellous bone and has been implicated in the destruction of cartilage in osteoarthritis (OA) and its sparing in osteoporosis (OP), but little is known of its composition, structure or material properties. This study investigated the microscopic appearance and mineral composition of the subchondral bone plate in femoral heads from patients with OA or OP to determine how these correspond to changes in composition and stiffness found in other studies. Freeze-fractured full-depth samples of the subchondral bone plate from the femoral heads of patients with osteoarthritis, osteoporosis or a matched control group were examined using back scattered and secondary emission scanning electron microscopy. Other samples were embedded and polished and examined using back-scattered electron microscopy and electron probe microanalysis. The appearances of the samples from the normal and osteoporotic patients were very similar, with the subchondral bone plate overlayed by a layer of calcified cartilage. Osteoporotic samples presented a more uniform fracture surface and the relative thicknesses of the layers appeared to be different. In contrast, the OA bone plate appeared to be porous and have a much more textured surface. There were occasional sites of microtrabecular bone formation between the trabeculae of the underlying cancellous bone, which were not seen in the other groups, and more numerous osteoclast resorption pits. The calcified cartilage layer was almost absent and the bone plate was apparently thickened. The appearance of the osteoarthritic subchondral bone plate was, therefore, considerably different from both the normal and the osteoporotic, strongly indicative of abnormal cellular activity.
Keywords: Joints, articular cartilage
Full Text
The Full Text of this article is available as a PDF (782.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amir G., Pirie C. J., Rashad S., Revell P. A. Remodelling of subchondral bone in osteoarthritis: a histomorphometric study. J Clin Pathol. 1992 Nov;45(11):990–992. doi: 10.1136/jcp.45.11.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aspden R. M., Hukins D. W. Calcification of the deep zone in pig femoral head cartilage. Experientia. 1981 Dec 15;37(12):1333–1334. doi: 10.1007/BF01948394. [DOI] [PubMed] [Google Scholar]
- Bailey A. J., Mansell J. P. Do subchondral bone changes exacerbate or precede articular cartilage destruction in osteoarthritis of the elderly? Gerontology. 1997;43(5):296–304. doi: 10.1159/000213866. [DOI] [PubMed] [Google Scholar]
- Björkström S., Goldie I. F. Hardness of the subchondral bone of the patella in the normal state, in chondromalacia, and in osteoarthrosis. Acta Orthop Scand. 1982 Jun;53(3):451–462. doi: 10.3109/17453678208992240. [DOI] [PubMed] [Google Scholar]
- Boyde A., Maconnachie E., Reid S. A., Delling G., Mundy G. R. Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc. 1986;(Pt 4):1537–1554. [PubMed] [Google Scholar]
- Brown T. D., Shaw D. T. In vitro contact stress distributions in the natural human hip. J Biomech. 1983;16(6):373–384. doi: 10.1016/0021-9290(83)90071-4. [DOI] [PubMed] [Google Scholar]
- Carlson C. S., Loeser R. F., Purser C. B., Gardin J. F., Jerome C. P. Osteoarthritis in cynomolgus macaques. III: Effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res. 1996 Sep;11(9):1209–1217. doi: 10.1002/jbmr.5650110904. [DOI] [PubMed] [Google Scholar]
- Chai B. F., Tang X. M., Li H. Scanning electron microscopic study of subchondral bone tissues in osteoarthritic femoral head. Chin Med J (Engl) 1991 Jun;104(6):503–509. [PubMed] [Google Scholar]
- Christensen P., Kjaer J., Melsen F., Nielsen H. E., Sneppen O., Vang P. S. The subchondral bone of the proximal tibial epiphysis in osteoarthritis of the knee. Acta Orthop Scand. 1982 Dec;53(6):889–895. doi: 10.3109/17453678208992844. [DOI] [PubMed] [Google Scholar]
- Clark J. M., Huber J. D. The structure of the human subchondral plate. J Bone Joint Surg Br. 1990 Sep;72(5):866–873. doi: 10.1302/0301-620X.72B5.2211774. [DOI] [PubMed] [Google Scholar]
- Dedrick D. K., Goldstein S. A., Brandt K. D., O'Connor B. L., Goulet R. W., Albrecht M. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum. 1993 Oct;36(10):1460–1467. doi: 10.1002/art.1780361019. [DOI] [PubMed] [Google Scholar]
- Dequeker J., Mokassa L., Aerssens J. Bone density and osteoarthritis. J Rheumatol Suppl. 1995 Feb;43:98–100. [PubMed] [Google Scholar]
- Eckstein F., Milz S., Anetzberger H., Putz R. Thickness of the subchondral mineralised tissue zone (SMZ) in normal male and female and pathological human patellae. J Anat. 1998 Jan;192(Pt 1):81–90. doi: 10.1046/j.1469-7580.1998.19210081.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gevers G., Dequeker J., Geusens P., Nyssen-Behets C., Dhem A. Physical and histomorphological characteristics of iliac crest bone differ according to the grade of osteoarthritis at the hand. Bone. 1989;10(3):173–177. doi: 10.1016/8756-3282(89)90050-1. [DOI] [PubMed] [Google Scholar]
- Hodge W. A., Fijan R. S., Carlson K. L., Burgess R. G., Harris W. H., Mann R. W. Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci U S A. 1986 May;83(9):2879–2883. doi: 10.1073/pnas.83.9.2879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones S. J., Boyde A., Ali N. N. The resorption of biological and non-biological substrates by cultured avian and mammalian osteoclasts. Anat Embryol (Berl) 1984;170(3):247–256. doi: 10.1007/BF00318728. [DOI] [PubMed] [Google Scholar]
- Jones S. J., Boyde A. Histomorphometry of Howship's lacunae formed in vivo and in vitro: depths and volumes measured by scanning electron and confocal microscopy. Bone. 1993 May-Jun;14(3):455–460. doi: 10.1016/8756-3282(93)90179-e. [DOI] [PubMed] [Google Scholar]
- Kamibayashi L., Wyss U. P., Cooke T. D., Zee B. Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis. Calcif Tissue Int. 1995 Jul;57(1):69–73. doi: 10.1007/BF00299000. [DOI] [PubMed] [Google Scholar]
- Kamibayashi L., Wyss U. P., Cooke T. D., Zee B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone. 1995 Jul;17(1):27–35. doi: 10.1016/8756-3282(95)00137-3. [DOI] [PubMed] [Google Scholar]
- Lereim P., Goldie I., Dahlberg E. Hardness of the subchondral bone of the tibial condyles in the normal state and in osteoarthritis and rheumatoid arthritis. Acta Orthop Scand. 1974;45(4):614–627. doi: 10.3109/17453677408989184. [DOI] [PubMed] [Google Scholar]
- Li B., Aspden R. M. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997 Apr;12(4):641–651. doi: 10.1359/jbmr.1997.12.4.641. [DOI] [PubMed] [Google Scholar]
- Li B., Aspden R. M. Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis. 1997 Apr;56(4):247–254. doi: 10.1136/ard.56.4.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mbuyi-Muamba J. M., Dequeker J. Chemical composition of normal and osteoarthrotic cancellous bone of the femoral head. Studies of EDTA extracts and collagenase digests. Arch Orthop Trauma Surg. 1984;102(4):267–272. doi: 10.1007/BF00436142. [DOI] [PubMed] [Google Scholar]
- Mente P. L., Lewis J. L. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res. 1994 Sep;12(5):637–647. doi: 10.1002/jor.1100120506. [DOI] [PubMed] [Google Scholar]
- Milz S., Eckstein F., Putz R. The thickness of the subchondral plate and its correlation with the thickness of the uncalcified articular cartilage in the human patella. Anat Embryol (Berl) 1995 Nov;192(5):437–444. doi: 10.1007/BF00240376. [DOI] [PubMed] [Google Scholar]
- Milz S., Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat. 1994 Aug;185(Pt 1):103–110. [PMC free article] [PubMed] [Google Scholar]
- Oettmeier R., Arokoski J., Roth A. J., Helminen H. J., Tammi M., Abendroth K. Quantitative study of articular cartilage and subchondral bone remodeling in the knee joint of dogs after strenuous running training. J Bone Miner Res. 1992 Dec;7 (Suppl 2):S419–S424. doi: 10.1002/jbmr.5650071410. [DOI] [PubMed] [Google Scholar]
- Petersson I. F., Boegård T., Svensson B., Heinegård D., Saxne T. Changes in cartilage and bone metabolism identified by serum markers in early osteoarthritis of the knee joint. Br J Rheumatol. 1998 Jan;37(1):46–50. doi: 10.1093/rheumatology/37.1.46. [DOI] [PubMed] [Google Scholar]
- Radin E. L., Rose R. M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986 Dec;(213):34–40. [PubMed] [Google Scholar]
- Redler I., Mow V. C., Zimny M. L., Mansell J. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Relat Res. 1975 Oct;(112):357–362. [PubMed] [Google Scholar]
- Shimizu M., Tsuji H., Matsui H., Katoh Y., Sano A. Morphometric analysis of subchondral bone of the tibial condyle in osteoarthrosis. Clin Orthop Relat Res. 1993 Aug;(293):229–239. [PubMed] [Google Scholar]
- Simkin P. A., Heston T. F., Downey D. J., Benedict R. S., Choi H. S. Subchondral architecture in bones of the canine shoulder. J Anat. 1991 Apr;175:213–227. [PMC free article] [PubMed] [Google Scholar]
- Walton M., Elves M. W. Bone thickening in osteoarthrosis. Observations of an osteoarthrosis-prone strain of mouse. Acta Orthop Scand. 1979 Oct;50(5):501–506. doi: 10.3109/17453677908989795. [DOI] [PubMed] [Google Scholar]