Abstract
The development of antisense and gene therapy has focused mainly on improving methods for oligonucleotide and gene delivery into cells. In the present work, we describe a potent new strategy for oligonucleotide delivery based on the use of a short peptide vector, termed MPG (27 residues), which contains a hydrophobic domain derived from the fusion sequence of HIV gp41 and a hydrophilic domain derived from the nuclear localization sequence of SV40 T-antigen. The formation of peptide vector/oligonucleotide complexes was investigated by measuring changes in intrinsic tryptophan fluorescence of peptide and of mansyl-labelled oligonucleotides. MPG exhibits relatively high affinity for both single- and double-stranded DNA in a nanomolar range. Based on both intrinsic and extrinsic fluorescence titrations, it appears that the main binding between MPG and oligonucleotides occurs through electrostatic interactions, which involve the basic-residues of the peptide vector. Further peptide/peptide interactions also occur, leading to a higher MPG/oligonucleotide ratio (in the region of 20/1), which suggests that oligonucleotides are most likely coated with several molecules of MPG. Premixed complexes of peptide vector with single or double stranded oligonucleotides are delivered into cultured mammalian cells in less than 1 h with relatively high efficiency (90%). This new strategy of oligonucleotide delivery into cultured cells based on a peptide vector offers several advantages compared to other commonly used approaches of delivery including efficiency, stability and absence of cytotoxicity. The interaction with MPG strongly increases both the stability of the oligonucleotide to nuclease and crossing of the plasma membrane. The mechanism of cell delivery of oligonucleotides by MPG does not follow the endosomal pathway, which explains the rapid and efficient delivery of oligonucleotides in the nucleus. As such, we propose this peptide vector as a powerful tool for potential development in gene and antisense therapy.
Full Text
The Full Text of this article is available as a PDF (143.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal S. Antisense oligonucleotides: towards clinical trials. Trends Biotechnol. 1996 Oct;14(10):376–387. doi: 10.1016/0167-7799(96)10053-6. [DOI] [PubMed] [Google Scholar]
- Baltimore D. Gene therapy. Intracellular immunization. Nature. 1988 Sep 29;335(6189):395–396. doi: 10.1038/335395a0. [DOI] [PubMed] [Google Scholar]
- Behr J. P., Demeneix B., Loeffler J. P., Perez-Mutul J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6982–6986. doi: 10.1073/pnas.86.18.6982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behr J. P. Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem. 1994 Sep-Oct;5(5):382–389. doi: 10.1021/bc00029a002. [DOI] [PubMed] [Google Scholar]
- Bordier B., Perala-Heape M., Degols G., Lebleu B., Litvak S., Sarih-Cottin L., Hélène C. Sequence-specific inhibition of human immunodeficiency virus (HIV) reverse transcription by antisense oligonucleotides: comparative study in cell-free assays and in HIV-infected cells. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9383–9387. doi: 10.1073/pnas.92.20.9383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boussif O., Lezoualc'h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7297–7301. doi: 10.1073/pnas.92.16.7297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delahunty M. D., Rhee I., Freed E. O., Bonifacino J. S. Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: identification of critical glycine residues. Virology. 1996 Apr 1;218(1):94–102. doi: 10.1006/viro.1996.0169. [DOI] [PubMed] [Google Scholar]
- Dingwall C., Laskey R. The nuclear membrane. Science. 1992 Nov 6;258(5084):942–947. doi: 10.1126/science.1439805. [DOI] [PubMed] [Google Scholar]
- Divita G., Müller B., Immendörfer U., Gautel M., Rittinger K., Restle T., Goody R. S. Kinetics of interaction of HIV reverse transcriptase with primer/template. Biochemistry. 1993 Aug 10;32(31):7966–7971. doi: 10.1021/bi00082a018. [DOI] [PubMed] [Google Scholar]
- Divita G., Rittinger K., Geourjon C., Deléage G., Goody R. S. Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process. J Mol Biol. 1995 Feb 3;245(5):508–521. doi: 10.1006/jmbi.1994.0042. [DOI] [PubMed] [Google Scholar]
- Felgner J. H., Kumar R., Sridhar C. N., Wheeler C. J., Tsai Y. J., Border R., Ramsey P., Martin M., Felgner P. L. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem. 1994 Jan 28;269(4):2550–2561. [PubMed] [Google Scholar]
- Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freed E. O., Myers D. J., Risser R. Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4650–4654. doi: 10.1073/pnas.87.12.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallaher W. R. Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell. 1987 Jul 31;50(3):327–328. doi: 10.1016/0092-8674(87)90485-5. [DOI] [PubMed] [Google Scholar]
- Gauthier-Rouviere C., Vandromme M., Tuil D., Lautredou N., Morris M., Soulez M., Kahn A., Fernandez A., Lamb N. Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol Biol Cell. 1996 May;7(5):719–729. doi: 10.1091/mbc.7.5.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Girard F., Strausfeld U., Fernandez A., Lamb N. J. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell. 1991 Dec 20;67(6):1169–1179. doi: 10.1016/0092-8674(91)90293-8. [DOI] [PubMed] [Google Scholar]
- Gottschalk S., Sparrow J. T., Hauer J., Mims M. P., Leland F. E., Woo S. L., Smith L. C. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther. 1996 May;3(5):448–457. [PubMed] [Google Scholar]
- Harris J. D., Lemoine N. R. Strategies for targeted gene therapy. Trends Genet. 1996 Oct;12(10):400–405. doi: 10.1016/0168-9525(96)40031-2. [DOI] [PubMed] [Google Scholar]
- Kalderon D., Richardson W. D., Markham A. F., Smith A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature. 1984 Sep 6;311(5981):33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
- Lewis J. G., Lin K. Y., Kothavale A., Flanagan W. M., Matteucci M. D., DePrince R. B., Mook R. A., Jr, Hendren R. W., Wagner R. W. A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3176–3181. doi: 10.1073/pnas.93.8.3176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin I., Schaal H., Scheid A., Ruysschaert J. M. Lipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined by its orientation in the lipid bilayer. J Virol. 1996 Jan;70(1):298–304. doi: 10.1128/jvi.70.1.298-304.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michael S. I., Curiel D. T. Strategies to achieve targeted gene delivery via the receptor-mediated endocytosis pathway. Gene Ther. 1994 Jul;1(4):223–232. [PubMed] [Google Scholar]
- Méry J., Granier C., Juin M., Brugidou J. Disulfide linkage to polyacrylic resin for automated Fmoc peptide synthesis. Immunochemical applications of peptide resins and mercaptoamide peptides. Int J Pept Protein Res. 1993 Jul;42(1):44–52. doi: 10.1111/j.1399-3011.1993.tb00348.x. [DOI] [PubMed] [Google Scholar]
- Müller B., Restle T., Reinstein J., Goody R. S. Interaction of fluorescently labeled dideoxynucleotides with HIV-1 reverse transcriptase. Biochemistry. 1991 Apr 16;30(15):3709–3715. doi: 10.1021/bi00229a017. [DOI] [PubMed] [Google Scholar]
- Plank C., Oberhauser B., Mechtler K., Koch C., Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem. 1994 Apr 29;269(17):12918–12924. [PubMed] [Google Scholar]
- Soukchareun S., Tregear G. W., Haralambidis J. Preparation and characterization of antisense oligonucleotide-peptide hybrids containing viral fusion peptides. Bioconjug Chem. 1995 Jan-Feb;6(1):43–53. doi: 10.1021/bc00031a004. [DOI] [PubMed] [Google Scholar]
- Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
- Vidal P., Chaloin L., Méry J., Lamb N., Lautredou N., Bennes R., Heitz F. Solid-phase synthesis and cellular localization of a C- and/or N-terminal labelled peptide. J Pept Sci. 1996 Mar-Apr;2(2):125–133. doi: 10.1002/psc.58. [DOI] [PubMed] [Google Scholar]
- Wagner R. W. Gene inhibition using antisense oligodeoxynucleotides. Nature. 1994 Nov 24;372(6504):333–335. doi: 10.1038/372333a0. [DOI] [PubMed] [Google Scholar]
- Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. Nucleotide sequence of the AIDS virus, LAV. Cell. 1985 Jan;40(1):9–17. doi: 10.1016/0092-8674(85)90303-4. [DOI] [PubMed] [Google Scholar]