Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1999 Oct;195(Pt 3):359–373. doi: 10.1046/j.1469-7580.1999.19530359.x

Localisation and quantitation of autonomic innervation in the porcine heart II: endocardium, myocardium and epicardium

SIMON J CRICK 1 ,, ROBERT H ANDERSON 1 , SIEW YEN HO 1 , MARY N SHEPPARD 2
PMCID: PMC1468005  PMID: 10580851

Abstract

The immunological problems of pig hearts supporting life in human recipients have potentially been solved by transgenic technology. Nevertheless, other problems still remain. Autonomic innervation is important for the control of cardiac dynamics and there is evidence suggesting that some neurons remain intact after transplantation. Previous studies in the human heart have established regional differences in both general autonomic innervation and in its component neural subpopulations. Such studies are lacking in the pig heart. Quantitative immunohistochemical and histochemical techniques were used to demonstrate the pattern of innervation in pig hearts (Sus scrofa). Gradients of immunoreactivity for the general neural marker protein gene product 9.5 were observed both within and between the endocardial, myocardial and epicardial plexuses throughout the 4 cardiac chambers. An extensive ganglionated plexus was observed in the epicardial tissues and, to a lesser extent, in the myocardial tissues. The predominant neural subpopulation displayed acetylcholinesterase activity, throughout the endocardium, myocardium and epicardium. These nerves showed a right to left gradient in density in the endocardial plexus, which was not observed in either the myocardial or epicardial plexuses. A large proportion of nerves in the ganglionated plexus of the atrial epicardial tissues displayed AChE activity, together with their cell bodies. Tyrosine hydroxylase (TH)-immunoreactive nerves were the next most prominent subpopulation throughout the heart. TH-immunoreactive cell bodies were observed in the atrial ganglionated plexuses. Endocardial TH- and NPY-immunoreactive nerves also displayed a right to left gradient in density, whereas in the epicardial tissues they showed a ventricular to atrial gradient. Calcitonin gene-related peptide (CGRP)-immunoreactive nerves were the most abundant peptide-containing subpopulation after those possessing NPY immunoreactivity. They were most abundant in the epicardial tissues of the ventricles. Several important differences were observed between the innervation of the pig heart compared with the human heart. These differences may have implications for the function of donor transgenic pig hearts within human recipients.

Keywords: Autonomic nervous system, intracardiac neurons, xenotransplantation

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applegate R. J., Little W. C. Alteration of autonomic influence on left ventricular contractility by epicardial superfusion with hexamethonium and procaine. Cardiovasc Res. 1994 Jul;28(7):1042–1048. doi: 10.1093/cvr/28.7.1042. [DOI] [PubMed] [Google Scholar]
  2. Armour J. A., Hopkins D. A. Activity of canine in situ left atrial ganglion neurons. Am J Physiol. 1990 Oct;259(4 Pt 2):H1207–H1215. doi: 10.1152/ajpheart.1990.259.4.H1207. [DOI] [PubMed] [Google Scholar]
  3. Armour J. A., Hopkins D. A. Activity of in vivo canine ventricular neurons. Am J Physiol. 1990 Feb;258(2 Pt 2):H326–H336. doi: 10.1152/ajpheart.1990.258.2.H326. [DOI] [PubMed] [Google Scholar]
  4. Baláti B., Varró A., Papp J. G. Comparison of the cellular electrophysiological characteristics of canine left ventricular epicardium, M cells, endocardium and Purkinje fibres. Acta Physiol Scand. 1998 Oct;164(2):181–190. doi: 10.1046/j.1365-201X.1998.00416.x. [DOI] [PubMed] [Google Scholar]
  5. Boineau J. P., Miller C. B., Schuessler R. B., Roeske W. R., Autry L. J., Wylds A. C., Hill D. A. Activation sequence and potential distribution maps demonstrating multicentric atrial impulse origin in dogs. Circ Res. 1984 Mar;54(3):332–347. doi: 10.1161/01.res.54.3.332. [DOI] [PubMed] [Google Scholar]
  6. Brown O. M., Salata J. J., Graziani L. A. The distribution of acetylcholine and choline in guinea pig heart. Life Sci. 1985 Jan 28;36(4):383–389. doi: 10.1016/0024-3205(85)90125-0. [DOI] [PubMed] [Google Scholar]
  7. Burnstock G. Autonomic neuromuscular junctions: current developments and future directions. J Anat. 1986 Jun;146:1–30. [PMC free article] [PubMed] [Google Scholar]
  8. Butler C. K., Smith F. M., Cardinal R., Murphy D. A., Hopkins D. A., Armour J. A. Cardiac responses to electrical stimulation of discrete loci in canine atrial and ventricular ganglionated plexi. Am J Physiol. 1990 Nov;259(5 Pt 2):H1365–H1373. doi: 10.1152/ajpheart.1990.259.5.H1365. [DOI] [PubMed] [Google Scholar]
  9. Chilson D. A., Peigh P., Mahomed Y., Zipes D. P. Encircling endocardial incision interrupts efferent vagal-induced prolongation of endocardial and epicardial refractoriness in the dog. J Am Coll Cardiol. 1985 Feb;5(2 Pt 1):290–296. doi: 10.1016/s0735-1097(85)80049-8. [DOI] [PubMed] [Google Scholar]
  10. Chow L. T., Chow S. S., Anderson R. H., Gosling J. A. The innervation of the human myocardium at birth. J Anat. 1995 Aug;187(Pt 1):107–114. [PMC free article] [PubMed] [Google Scholar]
  11. Cinca J., Carreño A., Mont L., Blanch P., Soler-Soler J. Neurally mediated negative inotropic effect impairs myocardial function during cholinergic coronary vasoconstriction in pigs. Circulation. 1996 Sep 1;94(5):1101–1108. doi: 10.1161/01.cir.94.5.1101. [DOI] [PubMed] [Google Scholar]
  12. Cinca J., Worner F., Bardají A., Salas-Caudevilla A., Soler-Soler J. Induced ventricular arrhythmias in regionally denervated porcine heart with healed myocardial infarction. Cardiovasc Res. 1991 Jul;25(7):586–593. doi: 10.1093/cvr/25.7.586. [DOI] [PubMed] [Google Scholar]
  13. Crick S. J., Sheppard M. N., Anderson R. H., Polak J. M., Wharton J. A quantitative assessment of innervation in the conduction system of the calf heart. Anat Rec. 1996 Aug;245(4):685–698. doi: 10.1002/(SICI)1097-0185(199608)245:4<685::AID-AR9>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  14. Crick S. J., Sheppard M. N., Ho S. Y., Anderson R. H. Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J Anat. 1999 Oct;195(Pt 3):341–357. doi: 10.1046/j.1469-7580.1999.19530341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Crick S. J., Wharton J., Sheppard M. N., Royston D., Yacoub M. H., Anderson R. H., Polak J. M. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation. 1994 Apr;89(4):1697–1708. doi: 10.1161/01.cir.89.4.1697. [DOI] [PubMed] [Google Scholar]
  16. Dae M. W., De Marco T., Botvinick E. H., O'Connell J. W., Hattner R. S., Huberty J. P., Yuen-Green M. S. Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts--implications for clinical studies. J Nucl Med. 1992 Aug;33(8):1444–1450. [PubMed] [Google Scholar]
  17. Dae M. W., O'Connell J. W., Botvinick E. H., Ahearn T., Yee E., Huberty J. P., Mori H., Chin M. C., Hattner R. S., Herre J. M. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation. 1989 Mar;79(3):634–644. doi: 10.1161/01.cir.79.3.634. [DOI] [PubMed] [Google Scholar]
  18. Dalsgaard C. J., Franco-Cereceda A., Saria A., Lundberg J. M., Theodorsson-Norheim E., Hökfelt T. Distribution and origin of substance P- and neuropeptide Y-immunoreactive nerves in the guinea-pig heart. Cell Tissue Res. 1986;243(3):477–485. doi: 10.1007/BF00218054. [DOI] [PubMed] [Google Scholar]
  19. Day S. M., Gu J., Polak J. M., Bloom S. R. Somatostatin in the human heart and comparison with guinea pig and rat heart. Br Heart J. 1985 Feb;53(2):153–157. doi: 10.1136/hrt.53.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dickson D. W., Lund D. D., Subieta A. R., Prall J. L., Schmid P. G., Roskoski R., Jr Regional distribution of tyrosine hydroxylase and dopamine beta-hydroxylase activities in guinea pig heart. J Auton Nerv Syst. 1981 Nov;4(4):319–326. doi: 10.1016/0165-1838(81)90035-7. [DOI] [PubMed] [Google Scholar]
  21. Eid H., de Bold M. L., Chen J. H., de Bold A. J. Epicardial mesothelial cells synthesize and release endothelin. J Cardiovasc Pharmacol. 1994 Nov;24(5):715–720. doi: 10.1097/00005344-199424050-00005. [DOI] [PubMed] [Google Scholar]
  22. Forsgren S. Distribution of calcitonin gene-related peptide-like immunoreactivity in the bovine conduction system: correlation with substance P. Regul Pept. 1994 Jun 16;52(1):7–19. doi: 10.1016/0167-0115(94)90016-7. [DOI] [PubMed] [Google Scholar]
  23. Forsgren S. Neuropeptide Y-like immunoreactivity in relation to the distribution of sympathetic nerve fibers in the heart conduction system. J Mol Cell Cardiol. 1989 Mar;21(3):279–290. doi: 10.1016/0022-2828(89)90743-8. [DOI] [PubMed] [Google Scholar]
  24. Franco-Cereceda A. Resiniferatoxin-, capsaicin- and CGRP-evoked porcine coronary vasodilatation is independent of EDRF mechanisms but antagonized by CGRP(8-37). Acta Physiol Scand. 1991 Nov;143(3):331–337. doi: 10.1111/j.1748-1716.1991.tb09240.x. [DOI] [PubMed] [Google Scholar]
  25. Gagliardi M., Randall W. C., Bieger D., Wurster R. D., Hopkins D. A., Armour J. A. Activity of in vivo canine cardiac plexus neurons. Am J Physiol. 1988 Oct;255(4 Pt 2):H789–H800. doi: 10.1152/ajpheart.1988.255.4.H789. [DOI] [PubMed] [Google Scholar]
  26. Gerstheimer F. P., Metz J. Distribution of calcitonin gene-related peptide-like immunoreactivity in the guinea pig heart. Anat Embryol (Berl) 1986;175(2):255–260. doi: 10.1007/BF00389603. [DOI] [PubMed] [Google Scholar]
  27. Gordon L., Polak J. M., Moscoso G. J., Smith A., Kuhn D. M., Wharton J. Development of the peptidergic innervation of human heart. J Anat. 1993 Aug;183(Pt 1):131–140. [PMC free article] [PubMed] [Google Scholar]
  28. Gordon L., Wharton J., Gaer J. A., Inglis G. C., Taylor K. M., Polak J. M. Quantitative immunohistochemical assessment of bovine myocardial innervation before and after cryosurgical cardiac denervation. Cardiovasc Res. 1993 Feb;27(2):318–326. doi: 10.1093/cvr/27.2.318. [DOI] [PubMed] [Google Scholar]
  29. Gulbenkian S., Wharton J., Polak J. M. The visualisation of cardiovascular innervation in the guinea pig using an antiserum to protein gene product 9.5 (PGP 9.5). J Auton Nerv Syst. 1987 Mar;18(3):235–247. doi: 10.1016/0165-1838(87)90122-6. [DOI] [PubMed] [Google Scholar]
  30. Haass M., Hock M., Richardt G., Schömig A. Neuropeptide Y differentiates between exocytotic and nonexocytotic noradrenaline release in guinea-pig heart. Naunyn Schmiedebergs Arch Pharmacol. 1989 Nov;340(5):509–515. doi: 10.1007/BF00260605. [DOI] [PubMed] [Google Scholar]
  31. Hassall C. J., Burnstock G. Immunocytochemical localisation of neuropeptide Y and 5-hydroxytryptamine in a subpopulation of amine-handling intracardiac neurones that do not contain dopamine beta-hydroxylase in tissue culture. Brain Res. 1987 Sep 29;422(1):74–82. doi: 10.1016/0006-8993(87)90541-5. [DOI] [PubMed] [Google Scholar]
  32. Hassall C. J., Penketh R., Rodeck C., Burnstock G. The intracardiac neurones of the fetal human heart in culture. Anat Embryol (Berl) 1990;182(4):329–337. doi: 10.1007/BF02433493. [DOI] [PubMed] [Google Scholar]
  33. Hill E. L., Elde R. Vasoactive intestinal peptide distribution and colocalization with dopamine-beta-hydroxylase in sympathetic chain ganglia of pig. J Auton Nerv Syst. 1989 Aug;27(3):229–239. doi: 10.1016/0165-1838(89)90116-1. [DOI] [PubMed] [Google Scholar]
  34. Marron K., Wharton J., Sheppard M. N., Fagan D., Royston D., Kuhn D. M., de Leval M. R., Whitehead B. F., Anderson R. H., Polak J. M. Distribution, morphology, and neurochemistry of endocardial and epicardial nerve terminal arborizations in the human heart. Circulation. 1995 Oct 15;92(8):2343–2351. doi: 10.1161/01.cir.92.8.2343. [DOI] [PubMed] [Google Scholar]
  35. Marron K., Wharton J., Sheppard M. N., Gulbenkian S., Royston D., Yacoub M. H., Anderson R. H., Polak J. M. Human endocardial innervation and its relationship to the endothelium: an immunohistochemical, histochemical, and quantitative study. Cardiovasc Res. 1994 Oct;28(10):1490–1499. doi: 10.1093/cvr/28.10.1490. [DOI] [PubMed] [Google Scholar]
  36. Meller S. T., Gebhart G. F. A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience. 1992;48(3):501–524. doi: 10.1016/0306-4522(92)90398-l. [DOI] [PubMed] [Google Scholar]
  37. Miyazaki T., Pride H. P., Zipes D. P. Prostaglandins in the pericardial fluid modulate neural regulation of cardiac electrophysiological properties. Circ Res. 1990 Jan;66(1):163–175. doi: 10.1161/01.res.66.1.163. [DOI] [PubMed] [Google Scholar]
  38. Moravec M., Courtalon A., Moravec J. Intrinsic neurosecretory neurons of the rat heart atrioventricular junction: possibility of local neuromuscular feed back loops. J Mol Cell Cardiol. 1986 Apr;18(4):357–367. doi: 10.1016/s0022-2828(86)80899-9. [DOI] [PubMed] [Google Scholar]
  39. Moravec M., Moravec J. Adrenergic neurons and short proprioceptive feedback loops involved in the integration of cardiac function in the rat. Cell Tissue Res. 1989 Nov;258(2):381–385. doi: 10.1007/BF00239458. [DOI] [PubMed] [Google Scholar]
  40. Murphy D. A., O'Blenes S., Hanna B. D., Armour J. A. Capacity of intrinsic cardiac neurons to modify the acutely autotransplanted mammalian heart. J Heart Lung Transplant. 1994 Sep-Oct;13(5):847–856. [PubMed] [Google Scholar]
  41. Randall W. C., Thomas J. X., Jr, Barber M. J., Rinkema L. E. Selective denervation of the heart. Am J Physiol. 1983 Apr;244(4):H607–H613. doi: 10.1152/ajpheart.1983.244.4.H607. [DOI] [PubMed] [Google Scholar]
  42. Schmoeckel M., Bhatti F. N., Zaidi A., Cozzi E., Waterworth P. D., Tolan M. J., Pino-Chavez G., Goddard M., Warner R. G., Langford G. A. Orthotopic heart transplantation in a transgenic pig-to-primate model. Transplantation. 1998 Jun 27;65(12):1570–1577. doi: 10.1097/00007890-199806270-00006. [DOI] [PubMed] [Google Scholar]
  43. Smith D. C., Priola D. V. Enhanced acetylcholine release from denervated atria: intrinsic neural supersensitivity. Eur J Pharmacol. 1989 Feb 28;161(2-3):249–253. doi: 10.1016/0014-2999(89)90854-6. [DOI] [PubMed] [Google Scholar]
  44. Smith F. M., Hopkins D. A., Armour J. A. Electrophysiological properties of in vitro intrinsic cardiac neurons in the pig (Sus scrofa). Brain Res Bull. 1992 May;28(5):715–725. doi: 10.1016/0361-9230(92)90251-r. [DOI] [PubMed] [Google Scholar]
  45. Wharton J., Gulbenkian S., Mulderry P. K., Ghatei M. A., McGregor G. P., Bloom S. R., Polak J. M. Capsaicin induces a depletion of calcitonin gene-related peptide (CGRP)-immunoreactive nerves in the cardiovascular system of the guinea pig and rat. J Auton Nerv Syst. 1986 Aug;16(4):289–309. doi: 10.1016/0165-1838(86)90035-4. [DOI] [PubMed] [Google Scholar]
  46. Wharton J., Polak J. M., Gordon L., Banner N. R., Springall D. R., Rose M., Khagani A., Wallwork J., Yacoub M. H. Immunohistochemical demonstration of human cardiac innervation before and after transplantation. Circ Res. 1990 Apr;66(4):900–912. doi: 10.1161/01.res.66.4.900. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES