Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1999 Oct;195(Pt 3):375–386. doi: 10.1046/j.1469-7580.1999.19530375.x

Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds

A B G LANSDOWN 1 ,, B SAMPSON 1 , A ROWE 2
PMCID: PMC1468006  PMID: 10580852

Abstract

Metalloenzymes have an important role in repair and regenerative processes in skin wounds. Demands for different enzymes vary according to the phase in the healing cascade and constituent events. Sequential changes in the concentrations of calcium, copper, magnesium and zinc were studied in the incisional wound model in the rat over a 10 d period. Copper levels remained low (<10 μg/g dry weight) throughout, but calcium, magnesium and zinc increased from wounding and peaked at about 5 d at a time of high inflammation, granulation tissue formation and epidermal cell proliferation. Metal concentrations declined to normal by 7 d when inflammation had regressed, re-epithelialisation of the wound site was complete and the ‘normalisation’ phase had commenced. Although the wound was overtly healed by 10 d, the epidermis was still moderately hyperplastic. In view of competitive binding of trace metals at membrane receptors and carrier proteins, the ratios or balance between these trace metals was examined and the significance is discussed. Using immunocytochemistry, we demonstrated increases in metallothionein immunoreactivity as an indication of zinc and copper activity in the papillary dermis and in basal epidermal cells near the wound margin 1–5 d after wounding. This is consistent with metalloenzyme requirements in inflammation and fibrogenesis. Calmodulin, a major cytosolic calcium binding protein was highest in maturing keratinocytes and in sebaceous gland cells of normal skin; it was notably more abundant in the epidermis near the wound margin and in re-epithelialising areas at a time when local calcium levels were highest.

Keywords: Skin wounds, repair, trace metalloenzymes, metal ion balance, zinc, calcium, copper, magnesium

Full Text

The Full Text of this article is available as a PDF (853.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argyris T. S. The regulation of epidermal hyperplastic growth. Crit Rev Toxicol. 1981 May;9(2):151–200. doi: 10.3109/10408448109059564. [DOI] [PubMed] [Google Scholar]
  2. BORN G. V., CROSS M. J. EFFECTS OF INORGANIC IONS AND OF PLASMA PROTEINS ON THE AGGREGATION OF BLOOD PLATELETS BY ADENOSINE DIPHOSPHATE. J Physiol. 1964 Mar;170:397–414. doi: 10.1113/jphysiol.1964.sp007340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blair S. D., Jarvis P., Salmon M., McCollum C. Clinical trial of calcium alginate haemostatic swabs. Br J Surg. 1990 May;77(5):568–570. doi: 10.1002/bjs.1800770534. [DOI] [PubMed] [Google Scholar]
  4. Brewer G. J., Aster J. C., Knutsen C. A., Kruckeberg W. C. Zinc inhibition of calmodulin: a proposed molecular mechanism of zinc action on cellular functions. Am J Hematol. 1979;7(1):53–60. doi: 10.1002/ajh.2830070107. [DOI] [PubMed] [Google Scholar]
  5. Bullough W. S. Mitotic control in adult mammalian tissues. Biol Rev Camb Philos Soc. 1975 Feb;50(1):99–127. doi: 10.1111/j.1469-185x.1975.tb00990.x. [DOI] [PubMed] [Google Scholar]
  6. Chvapil M., Weldy P. L., Stankova L., Clark D. S., Zukoski C. F. Inhibitory effect of zinc ions on platelet aggregation and serotonin release reaction. Life Sci. 1975 Feb 15;16(4):561–571. [PubMed] [Google Scholar]
  7. Gelfant S., Candelas G. C. Regulation of epidermal mitosis. J Invest Dermatol. 1972 Jul;59(1):7–12. doi: 10.1111/1523-1747.ep12625684. [DOI] [PubMed] [Google Scholar]
  8. Halsted J. A., Smith J. C., Jr, Irwin M. I. A conspectus of research on zinc requirements of man. J Nutr. 1974 Mar;104(3):345–378. doi: 10.1093/jn/104.3.345. [DOI] [PubMed] [Google Scholar]
  9. Hembry R. M., Murphy G., Reynolds J. J. Immunolocalization of tissue inhibitor of metalloproteinases (TIMP) in human cells. Characterization and use of a specific antiserum. J Cell Sci. 1985 Feb;73:105–119. doi: 10.1242/jcs.73.1.105. [DOI] [PubMed] [Google Scholar]
  10. Heng M. K., Song M. K., Heng M. C. Reciprocity between tissue calmodulin and cAMP levels: modulation by excess zinc. Br J Dermatol. 1993 Sep;129(3):280–285. doi: 10.1111/j.1365-2133.1993.tb11847.x. [DOI] [PubMed] [Google Scholar]
  11. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  12. Kilcullen J. K., Ly Q. P., Chang T. H., Levenson S. M., Steinberg J. J. Nonviable Staphylococcus aureus and its peptidoglycan stimulate macrophage recruitment, angiogenesis, fibroplasia, and collagen accumulation in wounded rats. Wound Repair Regen. 1998 Mar-Apr;6(2):149–156. doi: 10.1046/j.1524-475x.1998.60209.x. [DOI] [PubMed] [Google Scholar]
  13. Lansdown A. B. Morphological variations in keratinising epithelia in the beagle. Vet Rec. 1985 Feb 2;116(5):127–130. doi: 10.1136/vr.116.5.127. [DOI] [PubMed] [Google Scholar]
  14. Lansdown A. B., Payne M. J. An evaluation of the local reaction and biodegradation of calcium sodium alginate (Kaltostat) following subcutaneous implantation in the rat. J R Coll Surg Edinb. 1994 Oct;39(5):284–288. [PubMed] [Google Scholar]
  15. Lansdown A. B. Physiological and toxicological changes in the skin resulting from the action and interaction of metal ions. Crit Rev Toxicol. 1995;25(5):397–462. doi: 10.3109/10408449509049339. [DOI] [PubMed] [Google Scholar]
  16. Lansdown A. B., Sampson B. Dermal toxicity and percutaneous absorption of cadmium in rats and mice. Lab Anim Sci. 1996 Oct;46(5):549–554. [PubMed] [Google Scholar]
  17. Lansdown A. B., Sampson B., Laupattarakasem P., Vuttivirojana A. Silver aids healing in the sterile skin wound: experimental studies in the laboratory rat. Br J Dermatol. 1997 Nov;137(5):728–735. [PubMed] [Google Scholar]
  18. Lansdown A. B., Sampson B. Trace metals in keratinising epithelia in beagle dogs. Vet Rec. 1997 Nov 29;141(22):571–572. doi: 10.1136/vr.141.22.571. [DOI] [PubMed] [Google Scholar]
  19. Lansdown A. B. Zinc in the healing wound. Lancet. 1996 Mar 16;347(9003):706–707. doi: 10.1016/s0140-6736(96)90072-0. [DOI] [PubMed] [Google Scholar]
  20. Madden J. W., Peacock E. E., Jr Studies on the biology of collagen during wound healing. I. Rate of collagen synthesis and deposition in cutaneous wounds of the rat. Surgery. 1968 Jul;64(1):288–294. [PubMed] [Google Scholar]
  21. Menon G. K., Grayson S., Elias P. M. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol. 1985 Jun;84(6):508–512. doi: 10.1111/1523-1747.ep12273485. [DOI] [PubMed] [Google Scholar]
  22. Moynahan E. J. Letter: Acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet. 1974 Aug 17;2(7877):399–400. doi: 10.1016/s0140-6736(74)91772-3. [DOI] [PubMed] [Google Scholar]
  23. Nwomeh B. C., Liang H. X., Diegelmann R. F., Cohen I. K., Yager D. R. Dynamics of the matrix metalloproteinases MMP-1 and MMP-8 in acute open human dermal wounds. Wound Repair Regen. 1998 Mar-Apr;6(2):127–134. doi: 10.1046/j.1524-475x.1998.60206.x. [DOI] [PubMed] [Google Scholar]
  24. Palmiter R. D., Findley S. D., Whitmore T. E., Durnam D. M. MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6333–6337. doi: 10.1073/pnas.89.14.6333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pauwels M., van Weyenbergh J., Soumillion A., Proost P., De Ley M. Induction by zinc of specific metallothionein isoforms in human monocytes. Eur J Biochem. 1994 Feb 15;220(1):105–110. doi: 10.1111/j.1432-1033.1994.tb18603.x. [DOI] [PubMed] [Google Scholar]
  26. Pinkus H. The direction of growth of human epidermis. Br J Dermatol. 1970 Nov;83(5):556–564. doi: 10.1111/j.1365-2133.1970.tb15742.x. [DOI] [PubMed] [Google Scholar]
  27. Quaife C. J., Findley S. D., Erickson J. C., Froelick G. J., Kelly E. J., Zambrowicz B. P., Palmiter R. D. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry. 1994 Jun 14;33(23):7250–7259. doi: 10.1021/bi00189a029. [DOI] [PubMed] [Google Scholar]
  28. Ronnen M., Suster S., Klin B. Treatment of epidermal cysts with Solcoderm (a copper ion and acid solution). Clin Exp Dermatol. 1993 Nov;18(6):500–503. doi: 10.1111/j.1365-2230.1993.tb01017.x. [DOI] [PubMed] [Google Scholar]
  29. Rowe A., Farrell A. M., Bunker C. B. Constitutive endothelial and inducible nitric oxide synthase in inflammatory dermatoses. Br J Dermatol. 1997 Jan;136(1):18–23. [PubMed] [Google Scholar]
  30. Yang Y. Y., Woo E. S., Reese C. E., Bahnson R. R., Saijo N., Lazo J. S. Human metallothionein isoform gene expression in cisplatin-sensitive and resistant cells. Mol Pharmacol. 1994 Mar;45(3):453–460. [PubMed] [Google Scholar]
  31. Yuspa S. H., Kilkenny A. E., Steinert P. M., Roop D. R. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol. 1989 Sep;109(3):1207–1217. doi: 10.1083/jcb.109.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES