Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 15;25(14):2902–2910. doi: 10.1093/nar/25.14.2902

In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein.

M A Lochrie 1, S Waugh 1, D G Pratt Jr 1, J Clever 1, T G Parslow 1, B Polisky 1
PMCID: PMC146801  PMID: 9207041

Abstract

RNA ligands that bind to the human immunodeficiency virus type-1 (HIV-1) gag polyprotein with 10(-9) M affinity were isolated from a complex pool of RNAs using an in vitro selection method. The ligands bind to two different regions within gag, either to the matrix protein or to the nucleocapsid protein. Binding of a matrix ligand to gag did not interfere with the binding of a nucleocapsid ligand, and binding of a nucleocapsid ligand to gag did not interfere with the binding of a matrix ligand. However, binding of a nucleocapsid ligand to gag did interfere with binding of an RNA containing the HIV-1 RNA packaging element (psi), even though the sequence of the nucleocapsid ligand is not similar topsi. The minimal sequences required for the ligands to bind to matrix or nucleocapsid were determined. Minimal nucleocapsid ligands are predicted to form a stem-loop structure that has a self-complementary sequence at one end. Minimal matrix ligands are predicted to form a different stem-loop structure that has a CAARU loop sequence. The properties of these RNA ligands may provide tools for studying RNA interactions with matrix and nucleocapsid, and a novel method for inhibiting HIV replication.

Full Text

The Full Text of this article is available as a PDF (220.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P., Worland S., Gold L. Isolation of high-affinity RNA ligands to HIV-1 integrase from a random pool. Virology. 1995 Jun 1;209(2):327–336. doi: 10.1006/viro.1995.1264. [DOI] [PubMed] [Google Scholar]
  2. Bartel D. P., Zapp M. L., Green M. R., Szostak J. W. HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell. 1991 Nov 1;67(3):529–536. doi: 10.1016/0092-8674(91)90527-6. [DOI] [PubMed] [Google Scholar]
  3. Berkhout B., van Wamel J. L. Inhibition of human immunodeficiency virus expression by sense transcripts encoding the retroviral leader RNA. Antiviral Res. 1995 Mar;26(2):101–115. doi: 10.1016/0166-3542(94)00068-j. [DOI] [PubMed] [Google Scholar]
  4. Bukrinsky M. I., Haggerty S., Dempsey M. P., Sharova N., Adzhubel A., Spitz L., Lewis P., Goldfarb D., Emerman M., Stevenson M. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993 Oct 14;365(6447):666–669. doi: 10.1038/365666a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clever J., Sassetti C., Parslow T. G. RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1. J Virol. 1995 Apr;69(4):2101–2109. doi: 10.1128/jvi.69.4.2101-2109.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohli H., Fan B., Joshi R. L., Ramezani A., Li X., Joshi S. Inhibition of HIV-1 multiplication in a human CD4+ lymphocytic cell line expressing antisense and sense RNA molecules containing HIV-1 packaging signal and Rev response element(s). Antisense Res Dev. 1994 Spring;4(1):19–26. doi: 10.1089/ard.1994.4.19. [DOI] [PubMed] [Google Scholar]
  7. Darlix J. L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995 Dec 8;254(4):523–537. doi: 10.1006/jmbi.1995.0635. [DOI] [PubMed] [Google Scholar]
  8. Fitzwater T., Polisky B. A SELEX primer. Methods Enzymol. 1996;267:275–301. doi: 10.1016/s0076-6879(96)67019-0. [DOI] [PubMed] [Google Scholar]
  9. Freed E. O., Martin M. A. Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol. 1995 Mar;69(3):1984–1989. doi: 10.1128/jvi.69.3.1984-1989.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giver L., Bartel D., Zapp M., Pawul A., Green M., Ellington A. D. Selective optimization of the Rev-binding element of HIV-1. Nucleic Acids Res. 1993 Nov 25;21(23):5509–5516. doi: 10.1093/nar/21.23.5509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
  12. Göttlinger H. G., Dorfman T., Sodroski J. G., Haseltine W. A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3195–3199. doi: 10.1073/pnas.88.8.3195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haddrick M., Lear A. L., Cann A. J., Heaphy S. Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. J Mol Biol. 1996 May 31;259(1):58–68. doi: 10.1006/jmbi.1996.0301. [DOI] [PubMed] [Google Scholar]
  14. Hill C. P., Worthylake D., Bancroft D. P., Christensen A. M., Sundquist W. I. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3099–3104. doi: 10.1073/pnas.93.7.3099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Irvine D., Tuerk C., Gold L. SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J Mol Biol. 1991 Dec 5;222(3):739–761. doi: 10.1016/0022-2836(91)90509-5. [DOI] [PubMed] [Google Scholar]
  16. Jellinek D., Green L. S., Bell C., Janjić N. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry. 1994 Aug 30;33(34):10450–10456. doi: 10.1021/bi00200a028. [DOI] [PubMed] [Google Scholar]
  17. Jensen K. B., Green L., MacDougal-Waugh S., Tuerk C. Characterization of an in vitro-selected RNA ligand to the HIV-1 Rev protein. J Mol Biol. 1994 Jan 7;235(1):237–247. doi: 10.1016/s0022-2836(05)80030-0. [DOI] [PubMed] [Google Scholar]
  18. Khan R., Giedroc D. P. Nucleic acid binding properties of recombinant Zn2 HIV-1 nucleocapsid protein are modulated by COOH-terminal processing. J Biol Chem. 1994 Sep 9;269(36):22538–22546. [PubMed] [Google Scholar]
  19. Lapadat-Tapolsky M., Pernelle C., Borie C., Darlix J. L. Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1. Nucleic Acids Res. 1995 Jul 11;23(13):2434–2441. doi: 10.1093/nar/23.13.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laughrea M., Jetté L. Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248-271 are dispensable for dimer formation. Biochemistry. 1996 Feb 6;35(5):1589–1598. doi: 10.1021/bi951838f. [DOI] [PubMed] [Google Scholar]
  21. Lee P. P., Linial M. L. Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal. J Virol. 1994 Oct;68(10):6644–6654. doi: 10.1128/jvi.68.10.6644-6654.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leis J. P., Scheible P., Smith R. E. Correlation of RNA binding affinity of avian oncornavirus p19 proteins with the extent of processing of virus genome RNA in cells. J Virol. 1980 Sep;35(3):722–731. doi: 10.1128/jvi.35.3.722-731.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luban J., Bossolt K. L., Franke E. K., Kalpana G. V., Goff S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell. 1993 Jun 18;73(6):1067–1078. doi: 10.1016/0092-8674(93)90637-6. [DOI] [PubMed] [Google Scholar]
  24. Luban J., Goff S. P. Binding of human immunodeficiency virus type 1 (HIV-1) RNA to recombinant HIV-1 gag polyprotein. J Virol. 1991 Jun;65(6):3203–3212. doi: 10.1128/jvi.65.6.3203-3212.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Massiah M. A., Starich M. R., Paschall C., Summers M. F., Christensen A. M., Sundquist W. I. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J Mol Biol. 1994 Nov 25;244(2):198–223. doi: 10.1006/jmbi.1994.1719. [DOI] [PubMed] [Google Scholar]
  26. Matthews S., Barlow P., Boyd J., Barton G., Russell R., Mills H., Cunningham M., Meyers N., Burns N., Clark N. Structural similarity between the p17 matrix protein of HIV-1 and interferon-gamma. Nature. 1994 Aug 25;370(6491):666–668. doi: 10.1038/370666a0. [DOI] [PubMed] [Google Scholar]
  27. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  29. Muriaux D., Girard P. M., Bonnet-Mathonière B., Paoletti J. Dimerization of HIV-1Lai RNA at low ionic strength. An autocomplementary sequence in the 5' leader region is evidenced by an antisense oligonucleotide. J Biol Chem. 1995 Apr 7;270(14):8209–8216. doi: 10.1074/jbc.270.14.8209. [DOI] [PubMed] [Google Scholar]
  30. Nermut M. V., Hockley D. J., Jowett J. B., Jones I. M., Garreau M., Thomas D. Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus. Virology. 1994 Jan;198(1):288–296. doi: 10.1006/viro.1994.1032. [DOI] [PubMed] [Google Scholar]
  31. Niedrig M., Gelderblom H. R., Pauli G., März J., Bickhard H., Wolf H., Modrow S. Inhibition of infectious human immunodeficiency virus type 1 particle formation by Gag protein-derived peptides. J Gen Virol. 1994 Jun;75(Pt 6):1469–1474. doi: 10.1099/0022-1317-75-6-1469. [DOI] [PubMed] [Google Scholar]
  32. Paillart J. C., Marquet R., Skripkin E., Ehresmann B., Ehresmann C. Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. J Biol Chem. 1994 Nov 4;269(44):27486–27493. [PubMed] [Google Scholar]
  33. Paillart J. C., Skripkin E., Ehresmann B., Ehresmann C., Marquet R. A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5572–5577. doi: 10.1073/pnas.93.11.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pettit S. C., Moody M. D., Wehbie R. S., Kaplan A. H., Nantermet P. V., Klein C. A., Swanstrom R. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol. 1994 Dec;68(12):8017–8027. doi: 10.1128/jvi.68.12.8017-8027.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rao Z., Belyaev A. S., Fry E., Roy P., Jones I. M., Stuart D. I. Crystal structure of SIV matrix antigen and implications for virus assembly. Nature. 1995 Dec 14;378(6558):743–747. doi: 10.1038/378743a0. [DOI] [PubMed] [Google Scholar]
  36. Rice W. G., Supko J. G., Malspeis L., Buckheit R. W., Jr, Clanton D., Bu M., Graham L., Schaeffer C. A., Turpin J. A., Domagala J. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science. 1995 Nov 17;270(5239):1194–1197. doi: 10.1126/science.270.5239.1194. [DOI] [PubMed] [Google Scholar]
  37. Schneider D. J., Feigon J., Hostomsky Z., Gold L. High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry. 1995 Jul 25;34(29):9599–9610. doi: 10.1021/bi00029a037. [DOI] [PubMed] [Google Scholar]
  38. Skripkin E., Paillart J. C., Marquet R., Ehresmann B., Ehresmann C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4945–4949. doi: 10.1073/pnas.91.11.4945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sundquist W. I., Heaphy S. Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3393–3397. doi: 10.1073/pnas.90.8.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tanchou V., Delaunay T., De Rocquigny H., Bodeus M., Darlix J. L., Roques B., Benarous R. Monoclonal antibody-mediated inhibition of RNA binding and annealing activities of HIV type 1 nucleocapsid protein. AIDS Res Hum Retroviruses. 1994 Aug;10(8):983–993. doi: 10.1089/aid.1994.10.983. [DOI] [PubMed] [Google Scholar]
  41. Trono D., Feinberg M. B., Baltimore D. HIV-1 Gag mutants can dominantly interfere with the replication of the wild-type virus. Cell. 1989 Oct 6;59(1):113–120. doi: 10.1016/0092-8674(89)90874-x. [DOI] [PubMed] [Google Scholar]
  42. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  43. Tuerk C., MacDougal-Waugh S. In vitro evolution of functional nucleic acids: high-affinity RNA ligands of HIV-1 proteins. Gene. 1993 Dec 27;137(1):33–39. doi: 10.1016/0378-1119(93)90248-2. [DOI] [PubMed] [Google Scholar]
  44. Tuerk C., MacDougal S., Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6988–6992. doi: 10.1073/pnas.89.15.6988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wyatt J. R., Vickers T. A., Roberson J. L., Buckheit R. W., Jr, Klimkait T., DeBaets E., Davis P. W., Rayner B., Imbach J. L., Ecker D. J. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1356–1360. doi: 10.1073/pnas.91.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. You J. C., McHenry C. S. Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. J Biol Chem. 1994 Dec 16;269(50):31491–31495. [PubMed] [Google Scholar]
  47. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES