Abstract
The presence of collagen in enameloid distinguishes it clearly from true enamel, but little is known about the phylogenetic relationship between these 2 tissues. It has previously been reported that amelogenins are the principal proteins of the enamel matrix, that type I collagen and chondroitin sulphates are the predominant matrices in dentine, and that amphibian and reptilian aprismatic enamels contain no sulphated glycoconjugates, although certain sulphated substances are secreted into mammalian prismatic enamel during matrix formation. The larval urodele (Triturus pyrrhogaster) teeth are known to be composed of enameloid, dentine, and enamel-like tissue. To characterise the tooth matrices, the localisation of amelogenin-like proteins, type I collagen, and sulphated glycoconjugates was investigated. Chondroitin sulphates and fine fibrils immunoreactive for type I collagen were elaborated as the enameloid matrix inside the dental basement membrane. After the matrix had been deposited in full thickness, coarse collagen fibrils also immunoreactive for type I collagen and chondroitin sulphates were deposited below as the first dentine matrix. Further, enamel-like matrix with no collagen fibrils or sulphated glycoconjugates but strongly immunoreactive for amelogenins was deposited on the dentine. Although no immunolabelling for amelogenins was found over the enameloid matrix, at least at the formation stage, the zone of coarse collagen fibrils of dentine was partially immunoreactive as observed in mammalian mantle dentine. From the ontogeny and matrix constituents of larval urodele teeth, it is suggested that enameloid is originally a dentine-like tissue.
Keywords: Amphibian tooth matrix, dentine
Full Text
The Full Text of this article is available as a PDF (911.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Girondot M., Sire J. Y. Evolution of the amelogenin gene in toothed and toothless vertebrates. Eur J Oral Sci. 1998 Jan;106 (Suppl 1):501–508. doi: 10.1111/j.1600-0722.1998.tb02213.x. [DOI] [PubMed] [Google Scholar]
- Graham E. E. Isolation of enamelinlike proteins from blue shark (Prionace glauca) enameloid. J Exp Zool. 1985 May;234(2):185–191. doi: 10.1002/jez.1402340203. [DOI] [PubMed] [Google Scholar]
- Herold R. C., Graver H. T., Christner P. Immunohistochemical localization of amelogenins in enameloid of lower vertebrate teeth. Science. 1980 Mar 21;207(4437):1357–1358. doi: 10.1126/science.6986656. [DOI] [PubMed] [Google Scholar]
- Herold R., Rosenbloom J., Granovsky M. Phylogenetic distribution of enamel proteins: immunohistochemical localization with monoclonal antibodies indicates the evolutionary appearance of enamelins prior to amelogenins. Calcif Tissue Int. 1989 Aug;45(2):88–94. doi: 10.1007/BF02561407. [DOI] [PubMed] [Google Scholar]
- Hu C. C., Zhang C., Qian Q., Ryu O. H., Moradian-Oldak J., Fincham A. G., Simmer J. P. Cloning, DNA sequence, and alternative splicing of opossum amelogenin mRNAs. J Dent Res. 1996 Oct;75(10):1728–1734. doi: 10.1177/00220345960750100401. [DOI] [PubMed] [Google Scholar]
- Inage T., Shimokawa H., Teranishi Y., Iwase T., Toda Y., Moro I. Immunocytochemical demonstration of amelogenins and enamelins secreted by ameloblasts during the secretory and maturation stages. Arch Histol Cytol. 1989 Jul;52(3):213–229. doi: 10.1679/aohc.52.213. [DOI] [PubMed] [Google Scholar]
- Kawasaki K., Shimoda S., Fukae M. Histological and biochemical observations of developing enameloid of the Sea Bream. Adv Dent Res. 1987 Dec;1(2):191–195. doi: 10.1177/08959374870010020701. [DOI] [PubMed] [Google Scholar]
- Kogaya Y., Furuhashi K. Sulfated glycoconjugates in rat incisor secretory ameloblasts and developing enamel matrix. Calcif Tissue Int. 1988 Nov;43(5):307–318. doi: 10.1007/BF02556641. [DOI] [PubMed] [Google Scholar]
- Kogaya Y., Furuhashi K. Ultrastructural distribution of sulfated glycosaminoglycans in epithelial-mesenchymal interface of developing rat tooth germs. J Histochem Cytochem. 1987 May;35(5):585–593. doi: 10.1177/35.5.2435784. [DOI] [PubMed] [Google Scholar]
- Kogaya Y. Histochemical properties of sulfated glycoconjugates in developing enameloid matrix of the fish Polypterus senegalus. Histochemistry. 1989;91(3):185–190. doi: 10.1007/BF00490130. [DOI] [PubMed] [Google Scholar]
- Kogaya Y. Sulfated glycoconjugates in amelogenesis. Comparative histochemistry and evolution of ectoderm-derived hard tissues. Prog Histochem Cytochem. 1994;29(1):1–110. [PubMed] [Google Scholar]
- Lyngstadaas S. P., Risnes S., Nordbø H., Flønes A. G. Amelogenin gene similarity in vertebrates: DNA sequences encoding amelogenin seem to be conserved during evolution. J Comp Physiol B. 1990;160(5):469–472. doi: 10.1007/BF00258973. [DOI] [PubMed] [Google Scholar]
- Mauger A., Demarchez M., Herbage D., Grimaud J. A., Druguet M., Hartmann D., Sengel P. Immunofluorescent localization of collagen types I and III, and of fibronectin during feather morphogenesis in the chick embryo. Dev Biol. 1982 Nov;94(1):93–105. doi: 10.1016/0012-1606(82)90072-0. [DOI] [PubMed] [Google Scholar]
- Nanci A., Bendayan M., Slavkin H. C. Enamel protein biosynthesis and secretion in mouse incisor secretory ameloblasts as revealed by high-resolution immunocytochemistry. J Histochem Cytochem. 1985 Nov;33(11):1153–1160. doi: 10.1177/33.11.4056379. [DOI] [PubMed] [Google Scholar]
- Romanic A. M., Adachi E., Kadler K. E., Hojima Y., Prockop D. J. Copolymerization of pNcollagen III and collagen I. pNcollagen III decreases the rate of incorporation of collagen I into fibrils, the amount of collagen I incorporated, and the diameter of the fibrils formed. J Biol Chem. 1991 Jul 5;266(19):12703–12709. [PubMed] [Google Scholar]
- Samuel N., Bessem C., Bringas P., Jr, Slavkin H. C. Immunochemical homology between elasmobranch scale and tooth extracellular matrix proteins in Cephaloscyllium ventriosum. J Craniofac Genet Dev Biol. 1987;7(4):371–386. [PubMed] [Google Scholar]
- Sannes P. L. Differences in basement membrane-associated microdomains of type I and type II pneumocytes in the rat and rabbit lung. J Histochem Cytochem. 1984 Aug;32(8):827–833. doi: 10.1177/32.8.6747274. [DOI] [PubMed] [Google Scholar]
- Sannes P. L., Spicer S. S., Katsuyama T. Ultrastructural localization of sulfated complex carbohydrates with a modified iron diamine procedure. J Histochem Cytochem. 1979 Jul;27(7):1108–1111. doi: 10.1177/27.7.89157. [DOI] [PubMed] [Google Scholar]
- Sasagawa I. Fine structure of tooth germs during the formation of enameloid matrix in Tilapia nilotica, a teleost fish. Arch Oral Biol. 1995 Sep;40(9):801–814. doi: 10.1016/0003-9969(95)00050-y. [DOI] [PubMed] [Google Scholar]
- Sasagawa I. The appearance of matrix vesicles and mineralization during tooth development in three teleost fishes with well-developed enameloid and orthodentine. Arch Oral Biol. 1988;33(2):75–86. doi: 10.1016/0003-9969(88)90049-0. [DOI] [PubMed] [Google Scholar]
- Sire J. Y. Scales in young Polypterus senegalus are elasmoid: new phylogenetic implications. Am J Anat. 1989 Nov;186(3):315–323. doi: 10.1002/aja.1001860308. [DOI] [PubMed] [Google Scholar]
- Slavkin H. C., Diekwisch T. Evolution in tooth developmental biology: of morphology and molecules. Anat Rec. 1996 Jun;245(2):131–150. doi: 10.1002/(SICI)1097-0185(199606)245:2<131::AID-AR3>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Slavkin H. C., Samuel N., Bringas P., Jr, Nanci A., Santos V. Selachian tooth development: II. Immunolocalization of amelogenin polypeptides in epithelium during secretory amelogenesis in Squalus acanthias. J Craniofac Genet Dev Biol. 1983;3(1):43–52. [PubMed] [Google Scholar]
- Smith M. M., Miles A. E. The ultrastructure of odontogenesis in larval and adult Urodeles; differentiation of the dental epithelial cells. Z Zellforsch Mikrosk Anat. 1971;121(4):470–498. doi: 10.1007/BF00560155. [DOI] [PubMed] [Google Scholar]
- Toyosawa S., O'hUigin C., Figueroa F., Tichy H., Klein J. Identification and characterization of amelogenin genes in monotremes, reptiles, and amphibians. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13056–13061. doi: 10.1073/pnas.95.22.13056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakita M. Current studies on tooth enamel development in lower vertebrates. Kaibogaku Zasshi. 1993 Aug;68(4):399–409. [PubMed] [Google Scholar]
- Zylberberg L., Sire J. Y., Nanci A. Immunodetection of amelogenin-like proteins in the ganoine of experimentally regenerating scales of Calamoichthys calabaricus, a primitive actinopterygian fish. Anat Rec. 1997 Sep;249(1):86–95. doi: 10.1002/(SICI)1097-0185(199709)249:1<86::AID-AR11>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]