Abstract
The process of wound healing begins with an inflammatory reaction that is principally dependent on cellular immune elements. Although the involvement in wound healing of leucocytes that mediate nonspecific immunity (e.g. neutrophils and macrophages) is well known, the participation of cells which prime the immune reaction, i.e. the lymphocytes, requires further investigation. This study was performed to examine the temporal sequence and kinetics of these cells during cutaneous wound repair. The model selected was a full-thickness skin excisional wound made on the flanks of female Wistar rats. At time points ranging from 3 h to 2 wk wound samples were processed for polyester wax-embedding. Target antigens were identified and monitored quantitatively in sections stained immunohistochemically. Monoclonal antibodies against neutrophils, macrophages, pan T cells and cytotoxic populations of lymphocytes were used. The results showed that these cells are involved in the process of wound healing in a distinctive dynamic pattern. The accumulation of CD3+ T lymphocytes in the wound bed was mainly associated with the phase of granulation tissue formation. Intraepithelial CD3+ T lymphocytes were detected in considerable numbers within the regenerating epidermis. The cytotoxic cell populations (OX8+) were classified morphologically into the cytotoxic/suppressor subset of T cells and NK cells. The OX8+ T cells were shown to have a kinetic pattern similar to CD3+ T lymphocytes but of a lower magnitude. The accumulation of OX8+ NK cells was confined to the early inflammatory phase of repair. It is concluded that CD3+ T lymphocytes as well as OX8+ cytotoxic populations of the immune system are involved in the process of cutaneous wound healing in temporal sequences which suggest that they may be involved in its modulation.
Keywords: Skin, T lymphocytes, NK cells
Full Text
The Full Text of this article is available as a PDF (494.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adolph V. R., DiSanto S. K., Bleacher J. C., Dillon P. W., Krummel T. M. The potential role of the lymphocyte in fetal wound healing. J Pediatr Surg. 1993 Oct;28(10):1316–1320. doi: 10.1016/s0022-3468(05)80320-3. [DOI] [PubMed] [Google Scholar]
- Baadsgaard O., Fisher G. J., Voorhees J. J., Cooper K. D. Interactions of epidermal cells and T cells in inflammatory skin diseases. J Am Acad Dermatol. 1990 Dec;23(6 Pt 2):1312–1317. doi: 10.1016/0190-9622(90)70359-p. [DOI] [PubMed] [Google Scholar]
- Bancroft G. J. The role of natural killer cells in innate resistance to infection. Curr Opin Immunol. 1993 Aug;5(4):503–510. doi: 10.1016/0952-7915(93)90030-v. [DOI] [PubMed] [Google Scholar]
- Barbul A., Breslin R. J., Woodyard J. P., Wasserkrug H. L., Efron G. The effect of in vivo T helper and T suppressor lymphocyte depletion on wound healing. Ann Surg. 1989 Apr;209(4):479–483. doi: 10.1097/00000658-198904000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbul A. Immune aspects of wound repair. Clin Plast Surg. 1990 Jul;17(3):433–442. [PubMed] [Google Scholar]
- Barbul A. Role of T-cell-dependent immune system in wound healing. Prog Clin Biol Res. 1988;266:161–175. [PubMed] [Google Scholar]
- Barker J. N., MacDonald D. M. Cutaneous lymphocyte trafficking in the inflammatory dermatoses. Br J Dermatol. 1992 Mar;126(3):211–215. doi: 10.1111/j.1365-2133.1992.tb00647.x. [DOI] [PubMed] [Google Scholar]
- Barão I., Ascensão J. L. Human natural killer cells. Arch Immunol Ther Exp (Warsz) 1998;46(4):213–229. [PubMed] [Google Scholar]
- Betz P. Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med. 1994;107(2):60–68. doi: 10.1007/BF01225491. [DOI] [PubMed] [Google Scholar]
- Blussé van Oud Alblas A., van der Linden-Schrever B., van Furth R. Origin and kinetics of pulmonary macrophages during an inflammatory reaction induced by intravenous administration of heat-killed bacillus Calmette-Guérin. J Exp Med. 1981 Aug 1;154(2):235–252. doi: 10.1084/jem.154.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouwens L., Wisse E. Proliferation, kinetics, and fate of monocytes in rat liver during a zymosan-induced inflammation. J Leukoc Biol. 1985 May;37(5):531–543. doi: 10.1002/jlb.37.5.531. [DOI] [PubMed] [Google Scholar]
- Breslin R. J., Wasserkrug H. L., Efron G., Barbul A. Suppressor cell generation during normal wound healing. J Surg Res. 1988 Apr;44(4):321–325. doi: 10.1016/0022-4804(88)90173-4. [DOI] [PubMed] [Google Scholar]
- Cantrell D. A., Robins R. A., Brooks C. G., Baldwin R. W. Phenotype of rat natural killer cells defined by monoclonal antibodies marking rat lymphocyte subsets. Immunology. 1982 Jan;45(1):97–103. [PMC free article] [PubMed] [Google Scholar]
- Castagnoli C., Trombotto C., Ondei S., Stella M., Calcagni M., Magliacani G., Alasia S. T. Characterization of T-cell subsets infiltrating post-burn hypertrophic scar tissues. Burns. 1997 Nov-Dec;23(7-8):565–572. doi: 10.1016/s0305-4179(97)00070-3. [DOI] [PubMed] [Google Scholar]
- Cioffi W. G., Burleson D. G., Pruitt B. A., Jr Leukocyte responses to injury. Arch Surg. 1993 Nov;128(11):1260–1267. doi: 10.1001/archsurg.1993.01420230088014. [DOI] [PubMed] [Google Scholar]
- Clark R. A. Basics of cutaneous wound repair. J Dermatol Surg Oncol. 1993 Aug;19(8):693–706. doi: 10.1111/j.1524-4725.1993.tb00413.x. [DOI] [PubMed] [Google Scholar]
- Diegelmann R. F., Kim J. C., Lindblad W. J., Smith T. C., Harris T. M., Cohen I. K. Collection of leukocytes, fibroblasts, and collagen within an implantable reservoir tube during tissue repair. J Leukoc Biol. 1987 Dec;42(6):667–672. doi: 10.1002/jlb.42.6.667. [DOI] [PubMed] [Google Scholar]
- Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
- Djeu J. Y., Blanchard D. K. Regulation of human polymorphonuclear neutrophil (PMN) activity against Candida albicans by large granular lymphocytes via release of a PMN-activating factor. J Immunol. 1987 Oct 15;139(8):2761–2767. [PubMed] [Google Scholar]
- Djeu J. Y. Natural killer cells. Role in resistance to cancer and infection. J Fla Med Assoc. 1991 Nov;78(11):763–765. [PubMed] [Google Scholar]
- Feiken E., Rømer J., Eriksen J., Lund L. R. Neutrophils express tumor necrosis factor-alpha during mouse skin wound healing. J Invest Dermatol. 1995 Jul;105(1):120–123. doi: 10.1111/1523-1747.ep12313429. [DOI] [PubMed] [Google Scholar]
- Fishel R. S., Barbul A., Beschorner W. E., Wasserkrug H. L., Efron G. Lymphocyte participation in wound healing. Morphologic assessment using monoclonal antibodies. Ann Surg. 1987 Jul;206(1):25–29. doi: 10.1097/00000658-198707000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilman S. C., Rosenberg J. S., Feldman J. D. Membrane phenotype of the rat cytotoxic T lymphocyte. J Immunol. 1982 Sep;129(3):1012–1016. [PubMed] [Google Scholar]
- Goto M., Zvaifler N. J. Characterization of the natural killer-like lymphocytes in rheumatoid synovial fluid. J Immunol. 1985 Mar;134(3):1483–1486. [PubMed] [Google Scholar]
- Groh V., Fabbi M., Hochstenbach F., Maziarz R. T., Strominger J. L. Double-negative (CD4-CD8-) lymphocytes bearing T-cell receptor alpha and beta chains in normal human skin. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5059–5063. doi: 10.1073/pnas.86.13.5059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanazono M., Yoshiki A., Ota K., Kitoh J., Kusakabe M. Immunohistochemical detection of DNA replication in mouse uterine cells by bromodeoxyuridine labeling of wax- and resin-embedded tissue sections. Stain Technol. 1990;65(3):139–149. doi: 10.3109/10520299009139927. [DOI] [PubMed] [Google Scholar]
- Kiecolt-Glaser J. K., Marucha P. T., Malarkey W. B., Mercado A. M., Glaser R. Slowing of wound healing by psychological stress. Lancet. 1995 Nov 4;346(8984):1194–1196. doi: 10.1016/s0140-6736(95)92899-5. [DOI] [PubMed] [Google Scholar]
- Kohl A., Volk H. D., Diezel W., Buntrock P., Diamantstein T. The dipeptide Lys-Pro restores the diminished wound healing following treatment with anti-T-helper cell monoclonal antibody. Int J Immunopharmacol. 1989;11(3):237–240. doi: 10.1016/0192-0561(89)90160-4. [DOI] [PubMed] [Google Scholar]
- Kovacs E. J., DiPietro L. A. Fibrogenic cytokines and connective tissue production. FASEB J. 1994 Aug;8(11):854–861. doi: 10.1096/fasebj.8.11.7520879. [DOI] [PubMed] [Google Scholar]
- Lawrence W. T., Norton J. A., Harvey A. K., Gorschboth C. M., Talbot T. L., Grotendorst G. R. Doxorubicin-induced impairment of wound healing in rats. J Natl Cancer Inst. 1986 Jan;76(1):119–126. [PubMed] [Google Scholar]
- Makinodan T., Kay M. M. Age influence on the immune system. Adv Immunol. 1980;29:287–330. doi: 10.1016/s0065-2776(08)60047-4. [DOI] [PubMed] [Google Scholar]
- Martin C. W., Muir I. F. The role of lymphocytes in wound healing. Br J Plast Surg. 1990 Nov;43(6):655–662. doi: 10.1016/0007-1226(90)90185-3. [DOI] [PubMed] [Google Scholar]
- Monte M., Davel L. E., de Lustig E. S. Inhibition of lymphocyte-induced angiogenesis by free radical scavengers. Free Radic Biol Med. 1994 Sep;17(3):259–266. doi: 10.1016/0891-5849(94)90081-7. [DOI] [PubMed] [Google Scholar]
- Nahar L., Kondo T., Habu S., Ohashi M., Nakane P. K. Natural killer cells in inflammatory lesions and transplanted tumors in mouse skin. Nagoya J Med Sci. 1989 Mar;51(1-4):25–34. [PubMed] [Google Scholar]
- Nickoloff B. J. Role of interferon-gamma in cutaneous trafficking of lymphocytes with emphasis on molecular and cellular adhesion events. Arch Dermatol. 1988 Dec;124(12):1835–1843. [PubMed] [Google Scholar]
- Nourshargh S. Mechanisms of neutrophil and eosinophil accumulation in vivo. Am Rev Respir Dis. 1993 Dec;148(6 Pt 2):S60–S64. doi: 10.1164/ajrccm/148.6_Pt_2.S60. [DOI] [PubMed] [Google Scholar]
- Oke B. O., Suarez-Quian C. A. Localization of secretory, membrane-associated and cytoskeletal proteins in rat testis using an improved immunocytochemical protocol that employs polyester wax. Biol Reprod. 1993 Mar;48(3):621–631. doi: 10.1095/biolreprod48.3.621. [DOI] [PubMed] [Google Scholar]
- Peterson J. M., Barbul A., Breslin R. J., Wasserkrug H. L., Efron G. Significance of T-lymphocytes in wound healing. Surgery. 1987 Aug;102(2):300–305. [PubMed] [Google Scholar]
- ROSS R., BENDITT E. P. Wound healing and collagen formation. I. Sequential changes in components of guinea pig skin wounds observed in the electron microscope. J Biophys Biochem Cytol. 1961 Dec;11:677–700. doi: 10.1083/jcb.11.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reusch M. K., Mansbridge J. N., Nickoloff B. J., Morhenn V. B. Immunophenotyping of skin cells during healing of suction blister injury. Dermatologica. 1991;183(3):179–183. doi: 10.1159/000247665. [DOI] [PubMed] [Google Scholar]
- Reynolds C. W., Sharrow S. O., Ortaldo J. R., Herberman R. B. Natural killer activity in the rat. II. Analysis of surface antigens on LGL by flow cytometry. J Immunol. 1981 Dec;127(6):2204–2208. [PubMed] [Google Scholar]
- Reynolds C. W., Timonen T., Herberman R. B. Natural killer (NK) cell activity in the rat. I. Isolation and characterization of the effector cells. J Immunol. 1981 Jul;127(1):282–287. [PubMed] [Google Scholar]
- Ross R., Odland G. Human wound repair. II. Inflammatory cells, epithelial-mesenchymal interrelations, and fibrogenesis. J Cell Biol. 1968 Oct;39(1):152–168. doi: 10.1083/jcb.39.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R. The fibroblast and wound repair. Biol Rev Camb Philos Soc. 1968 Feb;43(1):51–96. doi: 10.1111/j.1469-185x.1968.tb01109.x. [DOI] [PubMed] [Google Scholar]
- Schuler G. The dendritic, Thy-1-positive cell of murine epidermis: a new epidermal cell type of bone marrow origin. J Invest Dermatol. 1984 Aug;83(2):81–82. doi: 10.1111/1523-1747.ep12262578. [DOI] [PubMed] [Google Scholar]
- Schäffer M., Barbul A. Lymphocyte function in wound healing and following injury. Br J Surg. 1998 Apr;85(4):444–460. doi: 10.1046/j.1365-2168.1998.00734.x. [DOI] [PubMed] [Google Scholar]
- Scott R. A., Phillips B. The effect of antilymphocyte serum on wound healing. Br J Surg. 1969 Sep;56(9):700–700. [PubMed] [Google Scholar]
- Semenzato G., Trentin L., Zambello R., Agostini C., Cipriani A., Marcer G. Different types of cytotoxic lymphocytes recovered from the lungs of patients with hypersensitivity pneumonitis. Am Rev Respir Dis. 1988 Jan;137(1):70–74. doi: 10.1164/ajrccm/137.1.70. [DOI] [PubMed] [Google Scholar]
- Sigal N. H., Dumont F. J. Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol. 1992;10:519–560. doi: 10.1146/annurev.iy.10.040192.002511. [DOI] [PubMed] [Google Scholar]
- Siu G., Springer E. A., Hedrick S. M. The biology of the T-cell antigen receptor and its role in the skin immune system. J Invest Dermatol. 1990 Jun;94(6 Suppl):91S–100S. doi: 10.1111/1523-1747.ep12876046. [DOI] [PubMed] [Google Scholar]
- Stein J. M., Levenson S. M. Effect of the inflammatory reaction on subsequent wound healing. Surg Forum. 1966;17:484–485. [PubMed] [Google Scholar]
- Stoof T. J., Mitra R. S., Sarma V., Dixit V. M., Nickoloff B. J. Keratinocyte activation following T-lymphocyte binding. J Invest Dermatol. 1992 Jan;98(1):92–95. doi: 10.1111/1523-1747.ep12495676. [DOI] [PubMed] [Google Scholar]
- Tartof D., Yung C. W., Curran J. J., Livingston C., Thalji Z. Cells that mediate NK like cytotoxicity are present in the human delayed type hypersensitivity response. Clin Exp Immunol. 1984 Nov;58(2):462–469. [PMC free article] [PubMed] [Google Scholar]
- Thomson A. W., Whiting P. H., Simpson J. G. Cyclosporine: immunology, toxicity and pharmacology in experimental animals. Agents Actions. 1984 Oct;15(3-4):306–327. doi: 10.1007/BF01972366. [DOI] [PubMed] [Google Scholar]
- Trinchieri G., Perussia B. Human natural killer cells: biologic and pathologic aspects. Lab Invest. 1984 May;50(5):489–513. [PubMed] [Google Scholar]
- Vornberger W., Prins G., Musto N. A., Suarez-Quian C. A. Androgen receptor distribution in rat testis: new implications for androgen regulation of spermatogenesis. Endocrinology. 1994 May;134(5):2307–2316. doi: 10.1210/endo.134.5.8156934. [DOI] [PubMed] [Google Scholar]
- Wahl S. M., Allen J. B. T lymphocyte-dependent mechanisms of fibrosis. Prog Clin Biol Res. 1988;266:147–160. [PubMed] [Google Scholar]
- Woda B. A., McFadden M. L., Welsh R. M., Bain K. M. Separation and isolation of rat natural killer (NK) cells from T cells with monoclonal antibodies. J Immunol. 1984 May;132(5):2183–2184. [PubMed] [Google Scholar]
- Wojciak B., Crossan J. F. The accumulation of inflammatory cells in synovial sheath and epitenon during adhesion formation in healing rat flexor tendons. Clin Exp Immunol. 1993 Jul;93(1):108–114. doi: 10.1111/j.1365-2249.1993.tb06505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wòjciak B., Crossan J. F. The effects of T cells and their products on in vitro healing of epitenon cell microwounds. Immunology. 1994 Sep;83(1):93–98. [PMC free article] [PubMed] [Google Scholar]
- Yuan D., Koh C. Y., Wilder J. A. Interactions between B lymphocytes and NK cells. FASEB J. 1994 Oct;8(13):1012–1018. doi: 10.1096/fasebj.8.13.7926365. [DOI] [PubMed] [Google Scholar]
- de Boer O. J., van der Loos C. M., Hamerlinck F., Bos J. D., Das P. K. Reappraisal of in situ immunophenotypic analysis of psoriasis skin: interaction of activated HLA-DR+ immunocompetent cells and endothelial cells is a major feature of psoriatic lesions. Arch Dermatol Res. 1994;286(2):87–96. doi: 10.1007/BF00370733. [DOI] [PubMed] [Google Scholar]
- van Furth R., Nibbering P. H., van Dissel J. T., Diesselhoff-den Dulk M. M. The characterization, origin, and kinetics of skin macrophages during inflammation. J Invest Dermatol. 1985 Nov;85(5):398–402. doi: 10.1111/1523-1747.ep12277056. [DOI] [PubMed] [Google Scholar]