Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 Jan;196(Pt 1):1–13. doi: 10.1046/j.1469-7580.2000.19610001.x

Morphological heterogeneity of the GABAergic network in the suprachiasmatic nucleus, the brain's circadian pacemaker

MONA CASTEL 1 ,2 ,, JOHN F MORRIS 2
PMCID: PMC1468035  PMID: 10697283

Abstract

GABA (gamma-amino-butyric acid) is the predominant neurotransmitter in the mammalian suprachiasmatic nucleus (SCN), with a central role in circadian time-keeping. We therefore undertook an ultrastructural analysis of the GABA-containing innervation in the SCN of mice and rats using immunoperoxidase and immunogold procedures. GABA-immunoreactive (GABA-ir) neurons were identified by use of anti-GABA and anti-GAD (glutamic acid decarboxylase) antisera. The relationship between GABA-ir elements and the most prominent peptidergic neurons in the SCN, containing vasopressin-neurophysin (VP-NP) or vasoactive intestinal polypeptide (VIP), was also studied. Within any given field in the SCN, approximately 40–70% of the neuronal profiles were GABA-ir. In GABA-ir somata, immunogold particles were prominent over mitochondria, sparse over cytoplasm, and scattered as aggregates over nucleoplasm. In axonal boutons, gold particles were concentrated over electron-lucent synaptic vesicles (diameter 40–60 nm) and mitochondria, and in some instances over dense-cored vesicles (DCVs, diameter 90–110 nm). GABA-ir boutons formed either symmetric or asymmetric synaptic contacts with somata, dendritic shafts and spines, and occasionally with other terminals (axo-axonic). Homologous or autaptic connections (GABA on GABA, or GAD on GAD) were common. Although GABA appeared to predominate in most neuronal profiles, colocalisation of GABA within neurons that were predominantly neuropeptide-containing was also evident. About 66% of the VIP-containing boutons and 32% of the vasopressinergic boutons contained GABA. The dense and complex GABAergic network that pervades the SCN is therefore comprised of multiple neuronal phenotypes containing GABA, including a wide variety of axonal boutons that impinge on heterologous and homologous postsynaptic sites.

Keywords: GABA, neuropeptides, neuronal networks

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar-Roblero R., Verduzco-Carbajal L., Rodríguez C., Mendez-Franco J., Morán J., de la Mora M. P. Circadian rhythmicity in the GABAergic system in the suprachiasmatic nuclei of the rat. Neurosci Lett. 1993 Jul 23;157(2):199–202. doi: 10.1016/0304-3940(93)90736-5. [DOI] [PubMed] [Google Scholar]
  2. Belenky M., Wagner S., Yarom Y., Matzner H., Cohen S., Castel M. The suprachiasmatic nucleus in stationary organotypic culture. Neuroscience. 1996 Jan;70(1):127–143. doi: 10.1016/0306-4522(95)00327-f. [DOI] [PubMed] [Google Scholar]
  3. Bosman G. J., Steetzel B. D., De Man A. J., Van Kalmthout P. J., Visser F. E., De Grip W. J. Influence of aging and neurodegenerative disease on changes in band 3-like proteins in white blood cells. Mech Ageing Dev. 1995 Apr 21;80(1):43–51. doi: 10.1016/0047-6374(94)01553-x. [DOI] [PubMed] [Google Scholar]
  4. Buijs R. M., Hou Y. X., Shinn S., Renaud L. P. Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol. 1994 Feb 15;340(3):381–391. doi: 10.1002/cne.903400308. [DOI] [PubMed] [Google Scholar]
  5. Buijs R. M., Markman M., Nunes-Cardoso B., Hou Y. X., Shinn S. Projections of the suprachiasmatic nucleus to stress-related areas in the rat hypothalamus: a light and electron microscopic study. J Comp Neurol. 1993 Sep 1;335(1):42–54. doi: 10.1002/cne.903350104. [DOI] [PubMed] [Google Scholar]
  6. Buijs R. M., Wortel J., Hou Y. X. Colocalization of gamma-aminobutyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. J Comp Neurol. 1995 Jul 31;358(3):343–352. doi: 10.1002/cne.903580304. [DOI] [PubMed] [Google Scholar]
  7. Cagampang F. R., Rattray M., Powell J. F., Campbell I. C., Coen C. W. Circadian changes of glutamate decarboxylase 65 and 67 mRNA in the rat suprachiasmatic nuclei. Neuroreport. 1996 Aug 12;7(12):1925–1928. doi: 10.1097/00001756-199608120-00011. [DOI] [PubMed] [Google Scholar]
  8. Card J. P., Moore R. Y. Organization of lateral geniculate-hypothalamic connections in the rat. J Comp Neurol. 1989 Jun 1;284(1):135–147. doi: 10.1002/cne.902840110. [DOI] [PubMed] [Google Scholar]
  9. Castel M., Belenky M., Cohen S., Ottersen O. P., Storm-Mathisen J. Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci. 1993 Apr 1;5(4):368–381. doi: 10.1111/j.1460-9568.1993.tb00504.x. [DOI] [PubMed] [Google Scholar]
  10. Castel M., Feinstein N., Cohen S., Harari N. Vasopressinergic innervation of the mouse suprachiasmatic nucleus: an immuno-electron microscopic analysis. J Comp Neurol. 1990 Aug 8;298(2):172–187. doi: 10.1002/cne.902980204. [DOI] [PubMed] [Google Scholar]
  11. Castel M., Morris J., Belenky M. Non-synaptic and dendritic exocytosis from dense-cored vesicles in the suprachiasmatic nucleus. Neuroreport. 1996 Jan 31;7(2):543–547. doi: 10.1097/00001756-199601310-00040. [DOI] [PubMed] [Google Scholar]
  12. Cui L. N., Saeb-Parsy K., Dyball R. E. Neurones in the supraoptic nucleus of the rat are regulated by a projection from the suprachiasmatic nucleus. J Physiol. 1997 Jul 1;502(Pt 1):149–159. doi: 10.1111/j.1469-7793.1997.149bl.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Decavel C., Van den Pol A. N. GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol. 1990 Dec 22;302(4):1019–1037. doi: 10.1002/cne.903020423. [DOI] [PubMed] [Google Scholar]
  14. Dunlap J. Circadian rhythms. An end in the beginning. Science. 1998 Jun 5;280(5369):1548–1549. doi: 10.1126/science.280.5369.1548. [DOI] [PubMed] [Google Scholar]
  15. Greenough W. T., West R. W., DeVoogd T. J. Subsynaptic plate perforations: changes with age and experience in the rat. Science. 1978 Dec 8;202(4372):1096–1098. doi: 10.1126/science.715459. [DOI] [PubMed] [Google Scholar]
  16. Halasy K., Buhl E. H., Lörinczi Z., Tamás G., Somogyi P. Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus. 1996;6(3):306–329. doi: 10.1002/(SICI)1098-1063(1996)6:3<306::AID-HIPO8>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  17. Ingram C. D., Snowball R. K., Mihai R. Circadian rhythm of neuronal activity in suprachiasmatic nucleus slices from the vasopressin-deficient Brattleboro rat. Neuroscience. 1996 Nov;75(2):635–641. doi: 10.1016/0306-4522(96)00274-6. [DOI] [PubMed] [Google Scholar]
  18. Inouye S. T. Circadian rhythms of neuropeptides in the suprachiasmatic nucleus. Prog Brain Res. 1996;111:75–90. doi: 10.1016/s0079-6123(08)60401-x. [DOI] [PubMed] [Google Scholar]
  19. Jansen H. T., Gong Q., Norgren R. B., Jr, Lehman M. N. Single- and double-label immunocytochemical study of the ovine suprachiasmatic nucleus (SCN): GABAergic and peptidergic relationships. Brain Res Bull. 1994;34(5):499–506. doi: 10.1016/0361-9230(94)90024-8. [DOI] [PubMed] [Google Scholar]
  20. Jiang Z. G., Yang Y., Liu Z. P., Allen C. N. Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J Physiol. 1997 Feb 15;499(Pt 1):141–159. doi: 10.1113/jphysiol.1997.sp021917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Langley K., Grant N. J. Are exocytosis mechanisms neurotransmitter specific? Neurochem Int. 1997 Dec;31(6):739–757. doi: 10.1016/s0197-0186(97)00040-5. [DOI] [PubMed] [Google Scholar]
  22. Moore R. Y., Eichler V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972 Jul 13;42(1):201–206. doi: 10.1016/0006-8993(72)90054-6. [DOI] [PubMed] [Google Scholar]
  23. Moore R. Y., Speh J. C. GABA is the principal neurotransmitter of the circadian system. Neurosci Lett. 1993 Feb 5;150(1):112–116. doi: 10.1016/0304-3940(93)90120-a. [DOI] [PubMed] [Google Scholar]
  24. Okamura H., Bérod A., Julien J. F., Geffard M., Kitahama K., Mallet J., Bobillier P. Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: in situ hybridization of glutamic acid decarboxylase (GAD) mRNA and immunocytochemistry of GAD and GABA. Neurosci Lett. 1989 Jul 31;102(2-3):131–136. doi: 10.1016/0304-3940(89)90067-0. [DOI] [PubMed] [Google Scholar]
  25. Pennartz C. M., Bos N. P., Jeu M. T., Geurtsen A. M., Mirmiran M., Sluiter A. A., Buijs R. M. Membrane properties and morphology of vasopressin neurons in slices of rat suprachiasmatic nucleus. J Neurophysiol. 1998 Nov;80(5):2710–2717. doi: 10.1152/jn.1998.80.5.2710. [DOI] [PubMed] [Google Scholar]
  26. Pennartz C. M., De Jeu M. T., Geurtsen A. M., Sluiter A. A., Hermes M. L. Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus. J Physiol. 1998 Feb 1;506(Pt 3):775–793. doi: 10.1111/j.1469-7793.1998.775bv.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pow D. V., Morris J. F. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience. 1989;32(2):435–439. doi: 10.1016/0306-4522(89)90091-2. [DOI] [PubMed] [Google Scholar]
  28. Reppert S. M., Weaver D. R. Forward genetic approach strikes gold: cloning of a mammalian clock gene. Cell. 1997 May 16;89(4):487–490. doi: 10.1016/s0092-8674(00)80229-9. [DOI] [PubMed] [Google Scholar]
  29. Silver R., LeSauter J., Tresco P. A., Lehman M. N. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996 Aug 29;382(6594):810–813. doi: 10.1038/382810a0. [DOI] [PubMed] [Google Scholar]
  30. Somogyi P., Hodgson A. J., Chubb I. W., Penke B., Erdei A. Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem. 1985 Mar;33(3):240–248. doi: 10.1177/33.3.2579123. [DOI] [PubMed] [Google Scholar]
  31. Stephan F. K., Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1583–1586. doi: 10.1073/pnas.69.6.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strecker G. J., Wuarin J. P., Dudek F. E. GABAA-mediated local synaptic pathways connect neurons in the rat suprachiasmatic nucleus. J Neurophysiol. 1997 Oct;78(4):2217–2220. doi: 10.1152/jn.1997.78.4.2217. [DOI] [PubMed] [Google Scholar]
  33. Tanaka M., Matsuda T., Shigeyoshi Y., Ibata Y., Okamura H. Peptide expression in GABAergic neurons in rat suprachiasmatic nucleus in comparison with other forebrain structures: a double labeling in situ hybridization study. J Histochem Cytochem. 1997 Sep;45(9):1231–1237. doi: 10.1177/002215549704500906. [DOI] [PubMed] [Google Scholar]
  34. Theodosis D. T., Paut L., Tappaz M. L. Immunocytochemical analysis of the GABAergic innervation of oxytocin- and vasopressin-secreting neurons in the rat supraoptic nucleus. Neuroscience. 1986 Sep;19(1):207–222. doi: 10.1016/0306-4522(86)90016-3. [DOI] [PubMed] [Google Scholar]
  35. Vrang N., Mikkelsen J. D., Larsen P. J. Direct link from the suprachiasmatic nucleus to hypothalamic neurons projecting to the spinal cord: a combined tracing study using cholera toxin subunit B and Phaseolus vulgaris-leucoagglutinin. Brain Res Bull. 1997;44(6):671–680. doi: 10.1016/s0361-9230(97)00138-x. [DOI] [PubMed] [Google Scholar]
  36. Wagner S., Castel M., Gainer H., Yarom Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature. 1997 Jun 5;387(6633):598–603. doi: 10.1038/42468. [DOI] [PubMed] [Google Scholar]
  37. Welsh D. K., Logothetis D. E., Meister M., Reppert S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995 Apr;14(4):697–706. doi: 10.1016/0896-6273(95)90214-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES