Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 Jan;196(Pt 1):61–70. doi: 10.1046/j.1469-7580.2000.19610061.x

Human retinal astroglia. A comparative study of adult and the 18 month postnatal developmental stage

ALBERTO TRIVIÑO 1,, JOSÉ M RAMÍREZ 1, JUAN J SALAZAR 1, ANA I RAMÍREZ 1
PMCID: PMC1468041  PMID: 10697289

Abstract

The immunohistochemical location of glial fibrillary acidic protein (GFAP) was used to study the state of maturation of retinal astrocytes from an 18-mo-old infant and to compare it with the situation in the adult. Infant astrocytes showed intense GFAP immunoreactivity in the perikarya and possessed spindle-like enlargements in their processes, while in the adult immunoreactivity in the perikarya was scarce and the spindle-like enlargements were not evident. Two types of astrocyte were observed in adult and child retinas: elongated and star-shaped. In the adult, the star-shaped type tend to be more stylised and to have longer processes than in the infant. In the infant, numerous astrocyte cell bodies were observed over vessels, while in the adult these were scarce. In the infant, the star-shaped astrocytes made up a honeycomb plexus, but this was not fully developed. These results suggest that at 18 mo of postnatal development the retinal astrocytes are still increasing and growing into the astroglial structure found in adults.

Keywords: Astrocytes, glial fibrillary acidic protein

Full Text

The Full Text of this article is available as a PDF (728.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Distler C., Kirby M. A. Transience of astrocytes in the newborn macaque monkey retina. Eur J Neurosci. 1996 Apr;8(4):847–851. doi: 10.1111/j.1460-9568.1996.tb01272.x. [DOI] [PubMed] [Google Scholar]
  2. Fruttiger M., Calver A. R., Krüger W. H., Mudhar H. S., Michalovich D., Takakura N., Nishikawa S., Richardson W. D. PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron. 1996 Dec;17(6):1117–1131. doi: 10.1016/s0896-6273(00)80244-5. [DOI] [PubMed] [Google Scholar]
  3. Gariano R. F., Kalina R. E., Hendrickson A. E. Normal and pathological mechanisms in retinal vascular development. Surv Ophthalmol. 1996 May-Jun;40(6):481–490. doi: 10.1016/s0039-6257(96)82014-5. [DOI] [PubMed] [Google Scholar]
  4. Gariano R. F., Sage E. H., Kaplan H. J., Hendrickson A. E. Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest Ophthalmol Vis Sci. 1996 Nov;37(12):2367–2375. [PubMed] [Google Scholar]
  5. Henkind P. Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. Br J Ophthalmol. 1967 Feb;51(2):115–123. doi: 10.1136/bjo.51.2.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holländer H., Makarov F., Dreher Z., van Driel D., Chan-Ling T. L., Stone J. Structure of the macroglia of the retina: sharing and division of labour between astrocytes and Müller cells. J Comp Neurol. 1991 Nov 22;313(4):587–603. doi: 10.1002/cne.903130405. [DOI] [PubMed] [Google Scholar]
  7. Mudhar H. S., Pollock R. A., Wang C., Stiles C. D., Richardson W. D. PDGF and its receptors in the developing rodent retina and optic nerve. Development. 1993 Jun;118(2):539–552. doi: 10.1242/dev.118.2.539. [DOI] [PubMed] [Google Scholar]
  8. Nixon R. A., Paskevich P. A., Sihag R. K., Thayer C. Y. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol. 1994 Aug;126(4):1031–1046. doi: 10.1083/jcb.126.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Penfold P. L., Provis J. M., Madigan M. C., van Driel D., Billson F. A. Angiogenesis in normal human retinal development: the involvement of astrocytes and macrophages. Graefes Arch Clin Exp Ophthalmol. 1990;228(3):255–263. doi: 10.1007/BF00920031. [DOI] [PubMed] [Google Scholar]
  10. Provis J. M., Leech J., Diaz C. M., Penfold P. L., Stone J., Keshet E. Development of the human retinal vasculature: cellular relations and VEGF expression. Exp Eye Res. 1997 Oct;65(4):555–568. doi: 10.1006/exer.1997.0365. [DOI] [PubMed] [Google Scholar]
  11. Ramirez J. M., Triviño A., Ramirez A. I., Salazar J. J., Garcia-Sanchez J. Immunohistochemical study of human retinal astroglia. Vision Res. 1994 Aug;34(15):1935–1946. doi: 10.1016/0042-6989(94)90024-8. [DOI] [PubMed] [Google Scholar]
  12. Ramírez J. M., Triviño A., Ramírez A. I., Salazar J. J., García-Sánchez J. Structural specializations of human retinal glial cells. Vision Res. 1996 Jul;36(14):2029–2036. doi: 10.1016/0042-6989(95)00322-3. [DOI] [PubMed] [Google Scholar]
  13. Robinson S. R., Dreher Z. Evidence for three morphological classes of astrocyte in the adult rabbit retina: functional and developmental implications. Neurosci Lett. 1989 Dec 4;106(3):261–268. doi: 10.1016/0304-3940(89)90174-2. [DOI] [PubMed] [Google Scholar]
  14. Schnitzer J., Karschin A. The shape and distribution of astrocytes in the retina of the adult rabbit. Cell Tissue Res. 1986;246(1):91–102. doi: 10.1007/BF00219004. [DOI] [PubMed] [Google Scholar]
  15. Schnitzer J. The development of astrocytes and blood vessels in the postnatal rabbit retina. J Neurocytol. 1988 Aug;17(4):433–449. doi: 10.1007/BF01189801. [DOI] [PubMed] [Google Scholar]
  16. Seiler M. J., Aramant R. B. Photoreceptor and glial markers in human embryonic retina and in human embryonic retinal transplants to rat retina. Brain Res Dev Brain Res. 1994 Jul 15;80(1-2):81–95. doi: 10.1016/0165-3806(94)90092-2. [DOI] [PubMed] [Google Scholar]
  17. Triviño A., Ramírez J. M., Ramírez A. I., Salazar J. J., García-Sanchez J. Comparative study of astrocytes in human and rabbit retinae. Vision Res. 1997 Jul;37(13):1707–1711. doi: 10.1016/s0042-6989(97)00021-7. [DOI] [PubMed] [Google Scholar]
  18. Triviño A., Ramírez J. M., Ramírez A. I., Salazar J. J., García-Sanchez J. Retinal perivascular astroglia: an immunoperoxidase study. Vision Res. 1992 Sep;32(9):1601–1607. doi: 10.1016/0042-6989(92)90153-a. [DOI] [PubMed] [Google Scholar]
  19. Turner D. L., Cepko C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987 Jul 9;328(6126):131–136. doi: 10.1038/328131a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES