Abstract
The ultrastructure and size distributions of collagen fibrils in Glisson's sheath were investigated in the rat liver to analyse the mechanical environment around the fibrils and their possible cells of origin. Glisson's sheath was found to contain 2 populations of collagen fibrils with different diameters and distinct localisations, namely fibroblast-associated and bile epithelium-associated. Fibroblast-associated collagen was composed of fibrils arranged in bundles and constituted the majority of the collagen in Glisson's sheath. Bile epithelium-associated collagen was represented by small dispersed groups of fibrils just beneath the basement membrane of the bile duct. The basement membrane of the bile duct was frequently reduplicated into a few or as many as 10 layers of laminae densae, with scattered collagen fibrils between these laminae. The diameters of the fibrils of both groups of collagen increased in relation to the calibre of the bile duct, whereas at any given place in Glisson's sheath bile epithelium-associated collagen fibrils had a smaller diameter compared with those of the fibroblast-associated fibrils. The increment in fibril diameter along the bile duct is considered to be correlated with the increase in mechanical stress acting on Glisson's sheath. The difference in diameter between the 2 populations as well as the incorporation of fibrils between the laminae densae of the basement membrane of the bile duct supports the view that the bile epithelium-associated collagen is produced by the epithelial cells of the bile duct, thus having a different origin from that of fibroblast-associated collagen. These findings provide the first evidence that the epithelial cells of the interlobular bile duct produce fibril-forming collagen. Furthermore, it is suggested that cholestasis stimulates the epithelial cells of interlobular bile duct to increased synthesis of fibril-forming collagen that is also produced by these cells under physiological conditions.
Keywords: Interlobular bile ducts, morphometry, fibroblasts, basement membrane, fibrosis
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdel-Aziz G., Rescan P. Y., Clement B., Lebeau G., Rissel M., Grimaud J. A., Campion J. P., Guillouzo A. Cellular sources of matrix proteins in experimentally induced cholestatic rat liver. J Pathol. 1991 Jun;164(2):167–174. doi: 10.1002/path.1711640211. [DOI] [PubMed] [Google Scholar]
- Abe K., Furuta M., Tsukahara S. [Quick-freeze, deep-etch study of monkey lamina cribrosa]. Nippon Ganka Gakkai Zasshi. 1995 Aug;99(8):889–894. [PubMed] [Google Scholar]
- Adachi E., Hayashi T. In vitro formation of hybrid fibrils of type V collagen and type I collagen. Limited growth of type I collagen into thick fibrils by type V collagen. Connect Tissue Res. 1986;14(4):257–266. doi: 10.3109/03008208609017469. [DOI] [PubMed] [Google Scholar]
- Adachi E., Hopkinson I., Hayashi T. Basement-membrane stromal relationships: interactions between collagen fibrils and the lamina densa. Int Rev Cytol. 1997;173:73–156. doi: 10.1016/s0074-7696(08)62476-6. [DOI] [PubMed] [Google Scholar]
- Baerwald R. J., Williamson L. C., Stevens E., Rike C., Trabanino S., Carlton J. Isolation, ultrastructure, and partial characterization of collagen from the perineurium of the Florida lobster, Panulirus argus. Biochem Cell Biol. 1991 Aug;69(8):531–536. doi: 10.1139/o91-078. [DOI] [PubMed] [Google Scholar]
- Baranauskas V., Vidal B. C., Parizotto N. A. Observation of geometric structure of collagen molecules by atomic force microscopy. Appl Biochem Biotechnol. 1998 Feb;69(2):91–97. doi: 10.1007/BF02919391. [DOI] [PubMed] [Google Scholar]
- Brooks S. E., Reynolds P., Audretsch J. J., Haggis G. Scanning electron microscopy of proliferating bile ductules. Lab Invest. 1975 Sep;33(3):311–315. [PubMed] [Google Scholar]
- Buck R. C. Collagen fibril diameter in the common carotid artery of the rat. Connect Tissue Res. 1987;16(2):121–129. doi: 10.3109/03008208709002000. [DOI] [PubMed] [Google Scholar]
- Clement B., Grimaud J. A., Campion J. P., Deugnier Y., Guillouzo A. Cell types involved in collagen and fibronectin production in normal and fibrotic human liver. Hepatology. 1986 Mar-Apr;6(2):225–234. doi: 10.1002/hep.1840060212. [DOI] [PubMed] [Google Scholar]
- Desmoulière A., Darby I., Costa A. M., Raccurt M., Tuchweber B., Sommer P., Gabbiani G. Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat. Lab Invest. 1997 Jun;76(6):765–778. [PubMed] [Google Scholar]
- Diegelmann R. F., Guzelian P. S., Gay R., Gay S. Collagen formation by the hepatocyte in primary monolayer culture and in vivo. Science. 1983 Mar 18;219(4590):1343–1345. doi: 10.1126/science.6828863. [DOI] [PubMed] [Google Scholar]
- Flint M. H., Craig A. S., Reilly H. C., Gillard G. C., Parry D. A. Collagen fibril diameters and glycosaminoglycan content of skins--indices of tissue maturity and function. Connect Tissue Res. 1984;13(1):69–81. doi: 10.3109/03008208409152144. [DOI] [PubMed] [Google Scholar]
- Friedman S. L. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med. 1993 Jun 24;328(25):1828–1835. doi: 10.1056/NEJM199306243282508. [DOI] [PubMed] [Google Scholar]
- Gabella G. Ultrastructure of the tracheal muscle in developing, adult and ageing guinea-pigs. Anat Embryol (Berl) 1991;183(1):71–79. doi: 10.1007/BF00185837. [DOI] [PubMed] [Google Scholar]
- Gotoh T., Sugi Y. Electron-microscopic study of the collagen fibrils of the rat tail tendon as revealed by freeze-fracture and freeze-etching techniques. Cell Tissue Res. 1985;240(3):529–534. doi: 10.1007/BF00216341. [DOI] [PubMed] [Google Scholar]
- Gressner A. M. Liver fibrosis: perspectives in pathobiochemical research and clinical outlook. Eur J Clin Chem Clin Biochem. 1991 May;29(5):293–311. [PubMed] [Google Scholar]
- Guzelian P. S., Qureshi G. D., Diegelmann R. F. Collagen synthesis by the hepatocyte: studies in primary cultures of parenchymal cells from adult rat liver. Coll Relat Res. 1981;1(1):83–93. doi: 10.1016/s0174-173x(80)80010-0. [DOI] [PubMed] [Google Scholar]
- Hedbom E., Heinegård D. Interaction of a 59-kDa connective tissue matrix protein with collagen I and collagen II. J Biol Chem. 1989 Apr 25;264(12):6898–6905. [PubMed] [Google Scholar]
- Hino H., Ammitzbøll T., Møller R., Asboe-Hansen G. Ultrastructure of skin and hair of an Egyptian mummy. Transmission and scanning electron microscopic observations. J Cutan Pathol. 1982 Feb;9(1):25–32. doi: 10.1111/j.1600-0560.1982.tb01038.x. [DOI] [PubMed] [Google Scholar]
- Howlett C. R. The fine structure of the proximal growth plate of the avian tibia. J Anat. 1979 Mar;128(Pt 2):377–399. [PMC free article] [PubMed] [Google Scholar]
- Kawasaki H., Ogata T. Scanning electron microscopic study on the three-dimensional structure of the collagen fibrillar framework in the chronic active hepatitis and liver cirrhosis. Tohoku J Exp Med. 1992 Mar;166(3):355–373. doi: 10.1620/tjem.166.355. [DOI] [PubMed] [Google Scholar]
- Kawase T., Shiratori Y., Sugimoto T. Collagen production by rat liver fat-storing cells in primary culture. Exp Cell Biol. 1986;54(4):183–192. doi: 10.1159/000163355. [DOI] [PubMed] [Google Scholar]
- Keene D. R., Oxford J. T., Morris N. P. Ultrastructural localization of collagen types II, IX, and XI in the growth plate of human rib and fetal bovine epiphyseal cartilage: type XI collagen is restricted to thin fibrils. J Histochem Cytochem. 1995 Oct;43(10):967–979. doi: 10.1177/43.10.7560887. [DOI] [PubMed] [Google Scholar]
- Kobayashi A., Sugisaka M., Takehana K., Yamaguchi M., Eerdunchaolu, Iwasa E. K., Abe M. Morphological and histochemical analysis of a case of superficial digital flexor tendon injury in the horse. J Comp Pathol. 1999 May;120(4):403–414. doi: 10.1053/jcpa.1998.0288. [DOI] [PubMed] [Google Scholar]
- Kostović-Knezević L., Bradamante Z., Svajger A. Ultrastructure of elastic cartilage in the rat external ear. Cell Tissue Res. 1981;218(1):149–160. doi: 10.1007/BF00210101. [DOI] [PubMed] [Google Scholar]
- Kuc I. M., Scott P. G. Ultrastructure of the bovine temporomandibular joint disc. Arch Oral Biol. 1994 Jan;39(1):57–61. doi: 10.1016/0003-9969(94)90035-3. [DOI] [PubMed] [Google Scholar]
- Kurihara H., Uchida K. Distribution of microtubules and microfilaments in exocrine (ventral prostatic epithelial cells and pancreatic exocrine cells) and endocrine cells (cells of the adenohypophysis and islets of Langerhans). The relationship between cytoskeletons and epithelial-cell polarity. Histochemistry. 1987;87(3):223–227. doi: 10.1007/BF00492413. [DOI] [PubMed] [Google Scholar]
- Martinez-Hernandez A. The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver. Lab Invest. 1984 Jul;51(1):57–74. [PubMed] [Google Scholar]
- Matthew C. A., Moore M. J. Collagen fibril morphometry in transected rat extensor tendons. J Anat. 1991 Apr;175:263–268. [PMC free article] [PubMed] [Google Scholar]
- McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
- Meek K. M., Leonard D. W. Ultrastructure of the corneal stroma: a comparative study. Biophys J. 1993 Jan;64(1):273–280. doi: 10.1016/S0006-3495(93)81364-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meller D., Peters K., Meller K. Human cornea and sclera studied by atomic force microscopy. Cell Tissue Res. 1997 Apr;288(1):111–118. doi: 10.1007/s004410050798. [DOI] [PubMed] [Google Scholar]
- Milani S., Herbst H., Schuppan D., Hahn E. G., Stein H. In situ hybridization for procollagen types I, III and IV mRNA in normal and fibrotic rat liver: evidence for predominant expression in nonparenchymal liver cells. Hepatology. 1989 Jul;10(1):84–92. doi: 10.1002/hep.1840100117. [DOI] [PubMed] [Google Scholar]
- Mizuno I., Saburi N., Taguchi N., Kaneda T., Hoshino T. The fine structure of the fibrous zone of articular cartilage in the rat mandibular condyle. Shika Kiso Igakkai Zasshi. 1990 Feb;32(1):69–79. doi: 10.2330/joralbiosci1965.32.69. [DOI] [PubMed] [Google Scholar]
- Muona P., Jaakkola S., Salonen V., Peltonen J. Diabetes induces the formation of large diameter collagen fibrils in the sciatic nerves of BB rats. Matrix. 1989 Jan;9(1):62–67. doi: 10.1016/s0934-8832(89)80020-4. [DOI] [PubMed] [Google Scholar]
- Neurath M. F., Stofft E. Zur Ultrastruktur der langen Beuge- und Strecksehnen der Hand bei der rheumatischen Tenosynovialitis. Handchir Mikrochir Plast Chir. 1992 May;24(3):159–164. [PubMed] [Google Scholar]
- Nishimura T., Hattori A., Takahashi K. Ultrastructure of the intramuscular connective tissue in bovine skeletal muscle. A demonstration using the cell-maceration/scanning electron microscope method. Acta Anat (Basel) 1994;151(4):250–257. doi: 10.1159/000147671. [DOI] [PubMed] [Google Scholar]
- Ohtani O. Three-dimensional organization of the collagen fibrillar framework of the human and rat livers. Arch Histol Cytol. 1988 Dec;51(5):473–488. doi: 10.1679/aohc.51.473. [DOI] [PubMed] [Google Scholar]
- Ottani V., Franchi M., De Pasquale V., Leonardi L., Morocutti M., Ruggeri A. Collagen fibril arrangement and size distribution in monkey oral mucosa. J Anat. 1998 Apr;192(Pt 3):321–328. doi: 10.1046/j.1469-7580.1998.19230321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parry D. A., Barnes G. R., Craig A. S. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci. 1978 Dec 18;203(1152):305–321. doi: 10.1098/rspb.1978.0107. [DOI] [PubMed] [Google Scholar]
- Patterson-Kane J. C., Firth E. C., Goodship A. E., Parry D. A. Age-related differences in collagen crimp patterns in the superficial digital flexor tendon core region of untrained horses. Aust Vet J. 1997 Jan;75(1):39–44. doi: 10.1111/j.1751-0813.1997.tb13829.x. [DOI] [PubMed] [Google Scholar]
- Patterson-Kane J. C., Wilson A. M., Firth E. C., Parry D. A., Goodship A. E. Comparison of collagen fibril populations in the superficial digital flexor tendons of exercised and nonexercised thoroughbreds. Equine Vet J. 1997 Mar;29(2):121–125. doi: 10.1111/j.2042-3306.1997.tb01653.x. [DOI] [PubMed] [Google Scholar]
- Perche O., Hayashi M., Hayashi K., Birk D., Trelstad R. L., Sandoz D. Origin of type I collagen localized within oviduct epithelium of quail hyperstimulated by progesterone. J Cell Sci. 1990 Jan;95(Pt 1):85–95. doi: 10.1242/jcs.95.1.85. [DOI] [PubMed] [Google Scholar]
- Pác L., Synek S., Moster M. F. Ultrastructure of the vitreous body of the rabbit. Folia Morphol (Praha) 1989;37(3):314–318. [PubMed] [Google Scholar]
- Rada J. A., Cornuet P. K., Hassell J. R. Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res. 1993 Jun;56(6):635–648. doi: 10.1006/exer.1993.1081. [DOI] [PubMed] [Google Scholar]
- Romanic A. M., Adachi E., Kadler K. E., Hojima Y., Prockop D. J. Copolymerization of pNcollagen III and collagen I. pNcollagen III decreases the rate of incorporation of collagen I into fibrils, the amount of collagen I incorporated, and the diameter of the fibrils formed. J Biol Chem. 1991 Jul 5;266(19):12703–12709. [PubMed] [Google Scholar]
- Sakai T., Kriz W. The structural relationship between mesangial cells and basement membrane of the renal glomerulus. Anat Embryol (Berl) 1987;176(3):373–386. doi: 10.1007/BF00310191. [DOI] [PubMed] [Google Scholar]
- Sato K. Reticular fibers in the vocal fold mucosa. Ann Otol Rhinol Laryngol. 1998 Dec;107(12):1023–1028. doi: 10.1177/000348949810701205. [DOI] [PubMed] [Google Scholar]
- Shauly Y., Miller B., Lichtig C., Modan M., Meyer E. Tenon's capsule: ultrastructure of collagen fibrils in normals and infantile esotropia. Invest Ophthalmol Vis Sci. 1992 Mar;33(3):651–656. [PubMed] [Google Scholar]
- Svensson L., Aszódi A., Reinholt F. P., Fässler R., Heinegård D., Oldberg A. Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J Biol Chem. 1999 Apr 2;274(14):9636–9647. doi: 10.1074/jbc.274.14.9636. [DOI] [PubMed] [Google Scholar]
- Trelstad R. L., Hayashi K., Toole B. P. Epithelial collagens and glycosaminoglycans in the embryonic cornea. Macromolecular order and morphogenesis in the basement membrane. J Cell Biol. 1974 Sep;62(3):815–830. doi: 10.1083/jcb.62.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuchweber B., Desmoulière A., Bochaton-Piallat M. L., Rubbia-Brandt L., Gabbiani G. Proliferation and phenotypic modulation of portal fibroblasts in the early stages of cholestatic fibrosis in the rat. Lab Invest. 1996 Jan;74(1):265–278. [PubMed] [Google Scholar]
- Vogel K. G., Paulsson M., Heinegård D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J. 1984 Nov 1;223(3):587–597. doi: 10.1042/bj2230587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel K. G., Trotter J. A. The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll Relat Res. 1987 Jun;7(2):105–114. doi: 10.1016/s0174-173x(87)80002-x. [DOI] [PubMed] [Google Scholar]
- Waring G. O., 3rd, Rodrigues M. M. Ultrastructure and successful keratoplasty of sclerocornea in Mietens' syndrome. Am J Ophthalmol. 1980 Oct;90(4):469–475. doi: 10.1016/s0002-9394(14)75013-5. [DOI] [PubMed] [Google Scholar]
- Watanabe N., Nishizono H. A scanning and transmission electron microscopic study of fiber arrangement in the hepatic capsule. Okajimas Folia Anat Jpn. 1994 Dec;71(5):279–295. doi: 10.2535/ofaj1936.71.5_279. [DOI] [PubMed] [Google Scholar]
- Wong M., Hendrix M. J., von der Mark K., Little C., Stern R. Collagen in the egg shell membranes of the hen. Dev Biol. 1984 Jul;104(1):28–36. doi: 10.1016/0012-1606(84)90033-2. [DOI] [PubMed] [Google Scholar]
- Wright G. M., Youson J. H. Ultrastructure of cartilage from young adult sea lamprey, Petromyzon marinus L: a new type of vertebrate cartilage. Am J Anat. 1983 May;167(1):59–70. doi: 10.1002/aja.1001670106. [DOI] [PubMed] [Google Scholar]
- Yamabayashi S., Ohno S., Aguilar R. N., Furuya T., Hosoda M., Tsukahara S. Ultrastructural studies of collagen fibers of the cornea and sclera by a quick-freezing and deep-etching method. Ophthalmic Res. 1991;23(6):320–329. doi: 10.1159/000267129. [DOI] [PubMed] [Google Scholar]
- Yoshihara T., Kaname H., Ishii T., Igarashi M. Ultrastructure of nerve endings in the stapedius muscle of the squirrel monkey. ORL J Otorhinolaryngol Relat Spec. 1993;55(1):18–23. doi: 10.1159/000276347. [DOI] [PubMed] [Google Scholar]