Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2000 Apr;196(Pt 3):463–471. doi: 10.1046/j.1469-7580.2000.19630463.x

Determination of age at death using combined morphology and histology of the femur

C D L THOMAS 1 ,, M S STEIN 2 , S A FEIK 1 , J D WARK 2 , J G CLEMENT 1
PMCID: PMC1468082  PMID: 10853968

Abstract

Bone is characterised by age-related morphological and histological changes. We have previously established an automated method of recording bone morphometry and histology from entire transverse sections of cortical bone. Our aim was to determine whether data acquired using this automated system were useful in the prediction of age. Ninety-six specimens of human femoral middiaphysis were studied from subjects aged 21–92 y. Equations predicting specimen age were constructed using macroscopic data (total subperiosteal area (TSPA), periosteal perimeter (PP), endosteal perimeter (EP), cortical bone area (CA) and moments of area) and microscopic data (the number, size and diversity of pores and intracortical porosity) together with sex, height and weight. Both TSPA and PP were independent predictors of age but the number of pores was not a significant predictor of age in any equation. The age predicted by these equations was inaccurate by more than 8 y in over half the subjects. We conclude that we could not predict age at a clinically acceptable level using data from our automated system. This most likely reflects an insensitivity to regional age-related changes in bone histology because we recorded data from each entire cortex. Automated bone measurement according to cortical region might be more useful in the prediction of age. The inclusion of TSPA together with PP as independent predictors of age raises the possibility that a future measure of periosteal shape at the femoral diaphysis could also be helpful in the prediction of age. The accuracy reached with the relatively simple methods described here is sufficient to encourage the development of image-analysis systems for the automatic detection of more complex features.

Keywords: Bone, automated image analysis

Full Text

The Full Text of this article is available as a PDF (244.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATKINSON P. J. CHANGES IN RESORPTION SPACES IN FEMORAL CORTICAL BONE WITH AGE. J Pathol Bacteriol. 1965 Jan;89:173–178. doi: 10.1002/path.1700890118. [DOI] [PubMed] [Google Scholar]
  2. ATKINSON P. J. QUANTITATIVE ANALYSIS OF OSTEOPOROSIS IN CORTICAL BONE. Nature. 1964 Jan 25;201:373–375. doi: 10.1038/201373a0. [DOI] [PubMed] [Google Scholar]
  3. Ahlqvist J., Damsten O. A modification of Kerley's method for the microscopic determination of age in human bone. J Forensic Sci. 1969 Apr;14(2):205–212. [PubMed] [Google Scholar]
  4. Atkinson P. J., Weatherell J. A. Variation in the density of the femoral diaphysis with age. J Bone Joint Surg Br. 1967 Nov;49(4):781–788. [PubMed] [Google Scholar]
  5. Bertelsen P. K., Clement J. G., Thomas C. D. A morphometric study of the cortex of the human femur from early childhood to advanced old age. Forensic Sci Int. 1995 Jun 30;74(1-2):63–77. doi: 10.1016/0379-0738(95)01738-5. [DOI] [PubMed] [Google Scholar]
  6. Brockstedt H., Kassem M., Eriksen E. F., Mosekilde L., Melsen F. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone. 1993 Jul-Aug;14(4):681–691. doi: 10.1016/8756-3282(93)90092-o. [DOI] [PubMed] [Google Scholar]
  7. Broulik P., Kragstrup J., Mosekilde L., Melsen F. Osteon cross-sectional size in the iliac crest: variation in normals and patients with osteoporosis, hyperparathyroidism, acromegaly, hypothyroidism and treated epilepsia. Acta Pathol Microbiol Immunol Scand A. 1982 Sep;90(5):339–344. [PubMed] [Google Scholar]
  8. CURREY J. D. SOME EFFECTS OF AGEING IN HUMAN HAVERSIAN SYSTEMS. J Anat. 1964 Jan;98:69–75. [PMC free article] [PubMed] [Google Scholar]
  9. Ericksen M. F. Histologic estimation of age at death using the anterior cortex of the femur. Am J Phys Anthropol. 1991 Feb;84(2):171–179. doi: 10.1002/ajpa.1330840207. [DOI] [PubMed] [Google Scholar]
  10. Feik S. A., Thomas C. D., Clement J. G. Age trends in remodeling of the femoral midshaft differ between the sexes. J Orthop Res. 1996 Jul;14(4):590–597. doi: 10.1002/jor.1100140413. [DOI] [PubMed] [Google Scholar]
  11. Feik S. A., Thomas C. D., Clement J. G. Age-related changes in cortical porosity of the midshaft of the human femur. J Anat. 1997 Oct;191(Pt 3):407–416. doi: 10.1046/j.1469-7580.1997.19130407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frost H. M. Why do marathon runners have less bone than weight lifters? A vital-biomechanical view and explanation. Bone. 1997 Mar;20(3):183–189. doi: 10.1016/s8756-3282(96)00311-0. [DOI] [PubMed] [Google Scholar]
  13. Jowsey J. Studies of Haversian systems in man and some animals. J Anat. 1966 Oct;100(Pt 4):857–864. [PMC free article] [PubMed] [Google Scholar]
  14. Kerley E. R. Age determination of bone fragments. J Forensic Sci. 1969 Jan;14(1):59–67. [PubMed] [Google Scholar]
  15. Kerley E. R. The microscopic determination of age in human bone. Am J Phys Anthropol. 1965 Jun;23(2):149–163. doi: 10.1002/ajpa.1330230215. [DOI] [PubMed] [Google Scholar]
  16. Kerley E. R., Ubelaker D. H. Revisions in the microscopic method of estimating age at death in human cortical bone. Am J Phys Anthropol. 1978 Nov;49(4):545–546. doi: 10.1002/ajpa.1330490414. [DOI] [PubMed] [Google Scholar]
  17. Laval-Jeantet A. M., Bergot C., Carroll R., Garcia-Schaefer F. Cortical bone senescence and mineral bone density of the humerus. Calcif Tissue Int. 1983 May;35(3):268–272. doi: 10.1007/BF02405044. [DOI] [PubMed] [Google Scholar]
  18. Liu Z. Q., Austin T., Thomas C. D., Clement J. G. Bone feature analysis using image processing techniques. Comput Biol Med. 1996 Jan;26(1):65–76. doi: 10.1016/0010-4825(95)00044-5. [DOI] [PubMed] [Google Scholar]
  19. Martin R. B., Pickett J. C., Zinaich S. Studies of skeletal remodeling in aging men. Clin Orthop Relat Res. 1980 Jun;(149):268–282. [PubMed] [Google Scholar]
  20. Ortner D. J. Aging effects on osteon remodeling. Calcif Tissue Res. 1975 Jul 4;18(1):27–36. doi: 10.1007/BF02546224. [DOI] [PubMed] [Google Scholar]
  21. Ruff C. B., Hayes W. C. Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science. 1982 Sep 3;217(4563):945–948. doi: 10.1126/science.7112107. [DOI] [PubMed] [Google Scholar]
  22. SMITH R. W., Jr, WALKER R. R. FEMORAL EXPANSION IN AGING WOMEN: IMPLICATIONS FOR OSTEOPOROSIS AND FRACTURES. Science. 1964 Jul 10;145(3628):156–157. doi: 10.1126/science.145.3628.156. [DOI] [PubMed] [Google Scholar]
  23. Singh I. J., Gunberg D. L. Estimation of age at death in human males from quantitative histology of bone fragments. Am J Phys Anthropol. 1970 Nov;33(3):373–381. doi: 10.1002/ajpa.1330330311. [DOI] [PubMed] [Google Scholar]
  24. Stein M. S., Feik S. A., Thomas C. D., Clement J. G., Wark J. D. An automated analysis of intracortical porosity in human femoral bone across age. J Bone Miner Res. 1999 Apr;14(4):624–632. doi: 10.1359/jbmr.1999.14.4.624. [DOI] [PubMed] [Google Scholar]
  25. Stein M. S., Thomas C. D., Feik S. A., Wark J. D., Clement J. G. Bone size and mechanics at the femoral diaphysis across age and sex. J Biomech. 1998 Dec;31(12):1101–1110. doi: 10.1016/s0021-9290(98)00127-4. [DOI] [PubMed] [Google Scholar]
  26. Stout S. D., Gehlert S. J. Effects of field size when using Kerley's histological method for determination of age at death. Am J Phys Anthropol. 1982 Jun;58(2):123–125. doi: 10.1002/ajpa.1330580203. [DOI] [PubMed] [Google Scholar]
  27. Stout S. D., Gehlert S. J. The relative accuracy and reliability of histological aging methods. Forensic Sci Int. 1980 May-Jun;15(3):181–190. doi: 10.1016/0379-0738(80)90132-2. [DOI] [PubMed] [Google Scholar]
  28. Stout S. D., Paine R. R. Brief communication: histological age estimation using rib and clavicle. Am J Phys Anthropol. 1992 Jan;87(1):111–115. doi: 10.1002/ajpa.1330870110. [DOI] [PubMed] [Google Scholar]
  29. Stout S. D., Stanley S. C. Percent osteonal bone versus osteon counts: the variable of choice for estimating age at death. Am J Phys Anthropol. 1991 Dec;86(4):515–519. doi: 10.1002/ajpa.1330860407. [DOI] [PubMed] [Google Scholar]
  30. Thompson D. D. Age changes in bone mineralization, cortical thickness, and haversian canal area. Calcif Tissue Int. 1980;31(1):5–11. doi: 10.1007/BF02407161. [DOI] [PubMed] [Google Scholar]
  31. Thompson D. D., Galvin C. A. Estimation of age at death by tibial osteon remodeling in an autopsy series. Forensic Sci Int. 1983 Aug-Sep;22(2-3):203–211. doi: 10.1016/0379-0738(83)90015-4. [DOI] [PubMed] [Google Scholar]
  32. Thompson D. D. The core technique in the determination of age at death of skeletons. J Forensic Sci. 1979 Oct;24(4):902–915. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES