Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jul 15;25(14):2737–2744. doi: 10.1093/nar/25.14.2737

A biologically active 53 kDa fragment of overproduced alanyl-tRNA synthetase from Thermus thermophilus HB8 specifically interacts with tRNA Ala acceptor helix.

A Lechler 1, A Martin 1, T Zuleeg 1, S Limmer 1, R Kreutzer 1
PMCID: PMC146809  PMID: 9207019

Abstract

The alaS gene encoding the alanyl-tRNA synthetase (AlaRS) from Thermus thermophilus HB8 was cloned and sequenced. The gene comprises 2646 bp, corresponding to 882 amino acids, 45% of which are identical to the enzyme from Escherichia coli . The T. thermophilus AlaRS was overproduced in E.coli , purified and characterized. It has high thermal stability up to approximately 65 degrees C, with a temperature optimum of aminoacylation activity at approximately 60 degrees C, and will be valuable for crystallization. The purified enzyme appears as a dimer with a specific activity of 220 U/mg and k cat/ K M values of 118 000/s/M for alanine and 114 000/s/M for ATP. By genetic engineering a 53 kDa fragment of AlaRS comprising the N-terminal 470 amino acids (AlaN470) was also overproduced and purified. It is as stable as entire AlaRS and sufficient for specific aminoacylation of intact tRNAAla, as well as acceptor stem microhelices with a G3-U70, but not U3-A70, I3-U70 or C3-U70, base pair. The reduced binding strength of such microhelices to AlaN470 enabled, due to the resulting fast exchange of the microhelices between free and complexed states, preliminary NMR analyses of the binding mode and intermolecular recognition.

Full Text

The Full Text of this article is available as a PDF (201.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buechter D. D., Schimmel P. Minor groove recognition of the critical acceptor helix base pair by an appended module of a class II tRNA synthetase. Biochemistry. 1995 May 9;34(18):6014–6019. doi: 10.1021/bi00018a002. [DOI] [PubMed] [Google Scholar]
  2. Castenholz R. W. Thermophilic blue-green algae and the thermal environment. Bacteriol Rev. 1969 Dec;33(4):476–504. doi: 10.1128/br.33.4.476-504.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cusack S. Eleven down and nine to go. Nat Struct Biol. 1995 Oct;2(10):824–831. doi: 10.1038/nsb1095-824. [DOI] [PubMed] [Google Scholar]
  4. Davis M. W., Buechter D. D., Schimmel P. Functional dissection of a predicted class-defining motif in a class II tRNA synthetase of unknown structure. Biochemistry. 1994 Aug 23;33(33):9904–9911. doi: 10.1021/bi00199a012. [DOI] [PubMed] [Google Scholar]
  5. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  6. Francklyn C., Musier-Forsyth K., Schimmel P. Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs. Eur J Biochem. 1992 Jun 1;206(2):315–321. doi: 10.1111/j.1432-1033.1992.tb16929.x. [DOI] [PubMed] [Google Scholar]
  7. Gabriel K., Schneider J., McClain W. H. Functional evidence for indirect recognition of G.U in tRNA(Ala) by alanyl-tRNA synthetase. Science. 1996 Jan 12;271(5246):195–197. doi: 10.1126/science.271.5246.195. [DOI] [PubMed] [Google Scholar]
  8. Guéron M., Leroy J. L. Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol. 1995;261:383–413. doi: 10.1016/s0076-6879(95)61018-9. [DOI] [PubMed] [Google Scholar]
  9. Holbrook S. R., Cheong C., Tinoco I., Jr, Kim S. H. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature. 1991 Oct 10;353(6344):579–581. doi: 10.1038/353579a0. [DOI] [PubMed] [Google Scholar]
  10. Jasin M., Regan L., Schimmel P. Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature. 1983 Dec 1;306(5942):441–447. doi: 10.1038/306441a0. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lechler A., Keller B., Hennecke H., Kreutzer R. Overproduction of phenylalanyl-tRNA synthetase from Thermus thermophilus HB8 in Escherichia coli. Protein Expr Purif. 1996 Nov;8(3):347–357. doi: 10.1006/prep.1996.0110. [DOI] [PubMed] [Google Scholar]
  13. Limmer S., Reiser C. O., Schirmer N. K., Grillenbeck N. W., Sprinzl M. Nucleotide binding and GTP hydrolysis by elongation factor Tu from Thermus thermophilus as monitored by proton NMR. Biochemistry. 1992 Mar 24;31(11):2970–2977. doi: 10.1021/bi00126a018. [DOI] [PubMed] [Google Scholar]
  14. Miller W. T., Hill K. A., Schimmel P. Evidence for a "cysteine-histidine box" metal-binding site in an Escherichia coli aminoacyl-tRNA synthetase. Biochemistry. 1991 Jul 16;30(28):6970–6976. doi: 10.1021/bi00242a023. [DOI] [PubMed] [Google Scholar]
  15. Miller W. T., Schimmel P. A metal-binding motif implicated in RNA recognition by an aminoacyl-tRNA synthetase and by a retroviral gene product. Mol Microbiol. 1992 May;6(10):1259–1262. doi: 10.1111/j.1365-2958.1992.tb00846.x. [DOI] [PubMed] [Google Scholar]
  16. Miller W. T., Schimmel P. A retroviral-like metal binding motif in an aminoacyl-tRNA synthetase is important for tRNA recognition. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2032–2035. doi: 10.1073/pnas.89.6.2032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mosyak L., Reshetnikova L., Goldgur Y., Delarue M., Safro M. G. Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nat Struct Biol. 1995 Jul;2(7):537–547. doi: 10.1038/nsb0795-537. [DOI] [PubMed] [Google Scholar]
  18. Musier-Forsyth K., Usman N., Scaringe S., Doudna J., Green R., Schimmel P. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science. 1991 Aug 16;253(5021):784–786. doi: 10.1126/science.1876835. [DOI] [PubMed] [Google Scholar]
  19. Putney S. D., Schimmel P. An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription. Nature. 1981 Jun 25;291(5817):632–635. doi: 10.1038/291632a0. [DOI] [PubMed] [Google Scholar]
  20. Schimmel P., Ripmaster T. Modular design of components of the operational RNA code for alanine in evolution. Trends Biochem Sci. 1995 Sep;20(9):333–334. doi: 10.1016/s0968-0004(00)89067-2. [DOI] [PubMed] [Google Scholar]
  21. Sood S. M., Slattery C. W., Filley S. J., Wu M. X., Hill K. A. Further characterization of Escherichia coli alanyl-tRNA synthetase. Arch Biochem Biophys. 1996 Apr 15;328(2):295–301. doi: 10.1006/abbi.1996.0176. [DOI] [PubMed] [Google Scholar]
  22. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  23. Vornlocher H. P., Scheible W. R., Faulhammer H. G., Sprinzl M. Identification and purification of translation initiation factor 2 (IF2) from Thermus thermophilus. Eur J Biochem. 1997 Jan 15;243(1-2):66–71. doi: 10.1111/j.1432-1033.1997.66_1a.x. [DOI] [PubMed] [Google Scholar]
  24. Wu M. X., Filley S. J., Xiong J., Lee J. J., Hill K. A. A cysteine in the C-terminal region of alanyl-tRNA synthetase is important for aminoacylation activity. Biochemistry. 1994 Oct 11;33(40):12260–12266. doi: 10.1021/bi00206a032. [DOI] [PubMed] [Google Scholar]
  25. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES